{ "cells": [ { "cell_type": "markdown", "id": "4cbb1f83", "metadata": {}, "source": [ "# Performing data and compatibility analysis" ] }, { "cell_type": "markdown", "id": "21417e82", "metadata": {}, "source": [ "**pyddt** main goal is to establish a set of systematic procedures for indexing dynamical diffraction peaks and reading their line profile asymmetries, so this approach of using X-ray dynamical diffraction becomes reproducible and transferable.\n", "\n", "This last tutorial aims to show the standard procedures implemented into **pyddt** and analyze two data sets using them." ] }, { "cell_type": "markdown", "id": "844f48bd", "metadata": {}, "source": [ "### 0. Importing packages" ] }, { "cell_type": "markdown", "id": "739c07de", "metadata": {}, "source": [ "In this tutorial, it's necessary to use the magic function `%matplotlib qt`. Using it, matplotlib plots will be opened on an external window from the notebook. " ] }, { "cell_type": "code", "execution_count": 1, "id": "a2b6b193", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "62596a4099c349e9beb924e39c1ff60d", "version_major": 2, "version_minor": 0 }, "text/plain": [] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib qt \n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "plt.rcParams['font.size'] = '10'\n", "\n", "import sys\n", "sys.path.append('path/to/pyddt')\n", "\n", "import pyddt" ] }, { "cell_type": "markdown", "id": "554e4126", "metadata": {}, "source": [ "## 1. Analyzing Renninger scans" ] }, { "cell_type": "markdown", "id": "c9c54c24", "metadata": {}, "source": [ "### 1.1 CeFe$_4$P$_{12}$" ] }, { "cell_type": "markdown", "id": "7f32f989", "metadata": {}, "source": [ "Let's start by analyzing the scan of the reflection 002, filled skutterudite CeFe$_{4}$P$_{12}$.\n", "\n", "X-ray data acquisition was carried out at the Brazilian Synchrotron Light Laboratory (LNLS), bending magnetic\n", "beamline XRD2. X-rays of 7105.8 eV.\n", "\n", "See [Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction](https://link.springer.com/article/10.1557/mrc.2020.37) for a detailed reference." ] }, { "cell_type": "markdown", "id": "b420adac", "metadata": {}, "source": [ "#### 1.1.1 ExpData object" ] }, { "cell_type": "markdown", "id": "7ffe6f30", "metadata": {}, "source": [ "Creating an `expdata` object is the first step of data analysis. The necessary inputs are energy value, primary reflection indices, and the filename containing the data.\n", "\n", "The data must include the azimuth position and corresponding intensity. For the filled skutterudite, the filename is `data_CFP.dat`." ] }, { "cell_type": "code", "execution_count": 3, "id": "541a0b8d", "metadata": {}, "outputs": [], "source": [ "exp = pyddt.ExpData(7105.8, [0, 0, 2], 'data_CFP.dat')" ] }, { "cell_type": "markdown", "id": "0c60674f", "metadata": {}, "source": [ "Once this object was generated, we can visualize the scan. " ] }, { "cell_type": "code", "execution_count": 13, "id": "fbbaf916", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAG0CAYAAABzBVAwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABx0UlEQVR4nO3deVhUZf8/8PewI7JqgijiDuWCWxI9apYElqmYaaKpmWn2aGX2qFlptpraplaa3/bFMlusXCOzcEFcUXEhFxRcQBMZBFlnPr8//J0TIyAzMBvM+3VdcxVz7jnnM0dg3tz3fe6jEREBEREREdmUk60LICIiIiKGMiIiIiK7wFBGREREZAcYyoiIiIjsAEMZERERkR1gKCMiIiKyAwxlRERERHbAxdYFOBK9Xo9z587B29sbGo3G1uUQERGREUQEV65cQXBwMJycLNefxVBmRefOnUNISIityyAiIqIayMzMRPPmzS22f4YyK/L29gZw7R/Vx8fHxtUQERGRMfLy8hASEqJ+jlsKQ5kVKUOWPj4+DGVERER1jKWnHnGiPxEREZEdYCgjIiIisgMMZURERER2gKGMiIiIyA4wlBERERHZAYYyIiIiIjvAUEZERERkBxjKiIiIiOwAQxkRERGRHWAoIyIiIrIDDGVEREREdoChjIiIiMgOMJQRERFZUXFxMXQ6na3LIDvEUEZERGQl+fn5aNWqFfr162frUsgOudi6ACIiIkdx4MABnD9/HhcuXICIQKPR2LoksiPsKSMiIrKS48ePAwB0Oh0KCgpsXA3ZG4YyIiIiK1FCGQBotVobVkL2iKGMiIjISk6cOKH+P0MZXY+hjIiIyErK95Tl5ubarhCySwxlREREVsLhS7oRhjIiIiIruHz5MnJyctSvGcroejYNZYmJiRg4cCCCg4Oh0WiwevVqg+1z585FeHg4vLy84O/vj+joaCQnJxu0ycnJwahRo+Dj4wM/Pz+MHz8e+fn5Bm0OHDiA3r17w8PDAyEhIViwYEGFWlatWoXw8HB4eHigU6dOWLduncF2EcGcOXPQtGlTeHp6Ijo6GseOHTPPiSAionqv/HwygMOXVJFNQ1lBQQEiIiLw/vvvV7q9ffv2eO+993Dw4EFs3boVLVu2RExMDC5evKi2GTVqFA4dOoSEhASsWbMGiYmJmDhxoro9Ly8PMTExCA0NxZ49e7Bw4ULMnTsXy5cvV9ts374d8fHxGD9+PPbt24e4uDjExcUhNTVVbbNgwQIsXrwYy5YtQ3JyMry8vBAbG4uioiILnBkiIqpvyg9dAuwpo0qInQAgP/300w3baLVaASC///67iIgcPnxYAMiuXbvUNuvXrxeNRiNnz54VEZEPPvhA/P39pbi4WG0zc+ZMCQsLU78ePny4DBgwwOBYkZGR8thjj4mIiF6vl6CgIFm4cKG6PTc3V9zd3eWbb74x+j0q9Wu1WqNfQ0RE9cMrr7wiANTHrFmzbF0SGclan991Zk5ZSUkJli9fDl9fX0RERAAAkpKS4Ofnhx49eqjtoqOj4eTkpA5zJiUloU+fPnBzc1PbxMbGIi0tDZcvX1bbREdHGxwvNjYWSUlJAID09HRkZWUZtPH19UVkZKTapjLFxcXIy8szeBARkWNShi+VzyP2lNH17D6UrVmzBg0bNoSHhwfeeecdJCQkoHHjxgCArKwsNGnSxKC9i4sLAgICkJWVpbYJDAw0aKN8XV2b8tvLv66yNpWZN28efH191UdISIhJ752IiOoPZfiyc+fOADinjCqy+1B25513IiUlBdu3b0f//v0xfPhwXLhwwdZlGWXWrFnQarXqIzMz09YlERGRjSihTBndYU8ZXc/uQ5mXlxfatm2L2267DR9//DFcXFzw8ccfAwCCgoIqBLSysjLk5OQgKChIbZOdnW3QRvm6ujblt5d/XWVtKuPu7g4fHx+DBxEROZ6CggJ1ZKV79+4AGMqoIrsPZdfT6/UoLi4GAERFRSE3Nxd79uxRt//xxx/Q6/WIjIxU2yQmJqK0tFRtk5CQgLCwMPj7+6ttNm3aZHCchIQEREVFAQBatWqFoKAggzZ5eXlITk5W2xAREVVFmU8WEBCA0NBQABy+pIpsGsry8/ORkpKClJQUANcm1KekpCAjIwMFBQV47rnnsGPHDpw+fRp79uzBI488grNnz2LYsGEAgJtvvhn9+/fHhAkTsHPnTmzbtg1TpkzBiBEjEBwcDAAYOXIk3NzcMH78eBw6dAgrV67EokWLMG3aNLWOp556Chs2bMBbb72Fo0ePYu7cudi9ezemTJkCANBoNJg6dSpeffVV/PLLLzh48CDGjBmD4OBgxMXFWfWcERFR3aMMXbZt2xa+vr4A2FNGlbDotZ3V2Lx5s8Hlwcpj7NixUlhYKEOGDJHg4GBxc3OTpk2byqBBg2Tnzp0G+7h06ZLEx8dLw4YNxcfHR8aNGydXrlwxaLN//37p1auXuLu7S7NmzeSNN96oUMt3330n7du3Fzc3N+nQoYOsXbvWYLter5fZs2dLYGCguLu7S79+/SQtLc2k98slMYiIHNOCBQsEgIwcOVLS0tIEgPj4+Ni6LDKStT6/NSIiNkuEDiYvLw++vr7QarWcX0ZE5EAee+wxLF++HLNnz8bkyZMRFBQEjUaDsrIyODnVuZlEDsdan9/8TiAiIrKwyoYvRYTrV5IBhjIiIiILUyb6t23bFh4eHnB3dwfAeWVkiKGMiIjIgoqLi5GRkQEAaNOmDQBwsj9ViqGMiIjIgtLT0yEiaNiwoXoXGoYyqgxDGRERkQWVH7rUaDQA/g1lXKuMymMoIyIisqCTJ08CAFq3bq0+5+fnB4A9ZWSIoYyIiMiCrly5AuDfIAZw+JIqx1BGRERkQYWFhQAAT09P9TkOX1JlGMqIiIgsqLJQxuFLqgxDGRERkQXdqKeMoYzKYygjIiKyIIYyMhZDGRERkQVxThkZi6GMiIjIgjinjIzFUEZERGRBHL4kYzGUERERWRCHL8lYDGVEREQWxOFLMhZDGRERkQXdqKfs6tWrKC0ttUldZH8YyoiIiCyoslDm4+Oj/n9eXp7VayL7xFBGRERkQZWFMldXVzRo0AAA55XRvxjKiIiILKiyUAZwXhlVxFBGRERkQVWFMi6LQddjKCMiIrIQvV6P4uJiAICHh4fBNoYyuh5DGRERkYUogQyoeviSc8pIwVBGRERkIcrQJcDhS6oeQxkREZGFKKHM2dkZrq6uBtsYyuh6DGVEREQWUtUkf4C3WqKKGMqIiIgs5EahjEti0PUYyoiIiCzEmJ4yhjJSMJQRERFZCEMZmYKhjIiIyEKMGb7knDJSMJQRERFZCHvKyBQMZURERBbCUEamYCgjIiKyEC6JQaZgKCMiIrIQY+aUlZSUoKioyJplkZ1iKCMiIrKQG4Uyb29vaDQaABzCpGsYyoiIiCzkRqHMyckJ3t7eABjK6BqGMiIiIgu5USgDOK+MDDGUERERWUh1oczHxwcAcOXKFavVRPbLpqEsMTERAwcORHBwMDQaDVavXq1uKy0txcyZM9GpUyd4eXkhODgYY8aMwblz5wz2kZOTg1GjRsHHxwd+fn4YP3488vPzDdocOHAAvXv3hoeHB0JCQrBgwYIKtaxatQrh4eHw8PBAp06dsG7dOoPtIoI5c+agadOm8PT0RHR0NI4dO2a+k0FERPVOdaHMw8MDAFBcXGy1msh+2TSUFRQUICIiAu+//36FbVevXsXevXsxe/Zs7N27Fz/++CPS0tIwaNAgg3ajRo3CoUOHkJCQgDVr1iAxMRETJ05Ut+fl5SEmJgahoaHYs2cPFi5ciLlz52L58uVqm+3btyM+Ph7jx4/Hvn37EBcXh7i4OKSmpqptFixYgMWLF2PZsmVITk6Gl5cXYmNjecUMERFVydhQxs8SAgCInQAgP/300w3b7Ny5UwDI6dOnRUTk8OHDAkB27dqltlm/fr1oNBo5e/asiIh88MEH4u/vL8XFxWqbmTNnSlhYmPr18OHDZcCAAQbHioyMlMcee0xERPR6vQQFBcnChQvV7bm5ueLu7i7ffPNNlfUWFRWJVqtVH5mZmQJAtFptNWeDiIjqgwceeEAAyJIlSyrd3q9fPwEgX3/9tZUrI1NotVqrfH7XqTllWq0WGo1GXdslKSkJfn5+6NGjh9omOjoaTk5OSE5OVtv06dMHbm5uapvY2FikpaXh8uXLapvo6GiDY8XGxiIpKQkAkJ6ejqysLIM2vr6+iIyMVNtUZt68efD19VUfISEhtTsBRERUp1TXU+bu7g6Aw5d0TZ0JZUVFRZg5cybi4+PViZFZWVlo0qSJQTsXFxcEBAQgKytLbRMYGGjQRvm6ujblt5d/XWVtKjNr1ixotVr1kZmZadJ7JiKiuo3Dl2QKF1sXYIzS0lIMHz4cIoKlS5fauhyjubu7q38FERGR42FPGZnC7nvKlEB2+vRpJCQkqL1kABAUFIQLFy4YtC8rK0NOTg6CgoLUNtnZ2QZtlK+ra1N+e/nXVdaGiIjoeuwpI1PYdShTAtmxY8fw+++/o1GjRgbbo6KikJubiz179qjP/fHHH9Dr9YiMjFTbJCYmorS0VG2TkJCAsLAw+Pv7q202bdpksO+EhARERUUBAFq1aoWgoCCDNnl5eUhOTlbbEBERXY+hjExh01CWn5+PlJQUpKSkALg2oT4lJQUZGRkoLS3FAw88gN27d+Prr7+GTqdDVlYWsrKyUFJSAgC4+eab0b9/f0yYMAE7d+7Etm3bMGXKFIwYMQLBwcEAgJEjR8LNzQ3jx4/HoUOHsHLlSixatAjTpk1T63jqqaewYcMGvPXWWzh69Cjmzp2L3bt3Y8qUKQAAjUaDqVOn4tVXX8Uvv/yCgwcPYsyYMQgODkZcXJxVzxkREdUdHL4kk1j02s5qbN68WQBUeIwdO1bS09Mr3QZANm/erO7j0qVLEh8fLw0bNhQfHx8ZN26cXLlyxeA4+/fvl169eom7u7s0a9ZM3njjjQq1fPfdd9K+fXtxc3OTDh06yNq1aw226/V6mT17tgQGBoq7u7v069dP0tLSTHq/1rqkloiI7MNNN90kAOTAgQOVbn/22WcFgEydOtXKlZEprPX5rRERsUEWdEh5eXnw9fWFVqs1mBtHRET1k7e3N/Lz83Hs2DG0bdu2wvaXXnoJc+fOxaRJk+rUhWyOxlqf33Y9p4yIiKgu4/AlmYKhjIiIyALKysqg0+kAcKI/GYehjIiIyAKUXjKAPWVkHIYyIiIiCygfyqpaSJw9ZVQeQxkREZEFKKHM3d0dTk6Vf9wylFF5DGVEREQWUN0kf4DDl2SIoYyIiMgCjAll7Cmj8hjKiIiILIChjEzFUEZERGQBHL4kUzGUERERWQB7yshUDGVEREQWwJ4yMhVDGRERkQWwp4xMxVBGRERkAQxlZCqGMiIiIgswZfiytLQUer3eKnWR/WIoIyIisgBTesoAzisjhjIiIiKLMDWUcQiTGMqIiIgswJhQ5uLiAo1GA4A9ZcRQRkREZBHGhDKNRsPJ/qRiKCMiIrIAY0IZwLXK6F8MZURERBZgbChjTxkpGMqIiIgsgKGMTMVQRkREZAEcviRTMZQRERFZAHvKyFQMZURERBbAUEamYigjIiKyAA5fkqkYyoiIiCyAPWVkKoYyIiIiC2BPGZmKoYyIiMgC2FNGpmIoIyIisgAlZDGUkbEYyoiIiMxMRDh8SSZjKCMiIjKz8gGLPWVkLIYyIiIiM1N6yQCGMjIeQxkREZGZKaHM2dkZrq6uN2zL4UtSMJQRERGZmRLKlF6wG2FPGSkYyoiIiMzM2En+AHvK6F8MZURERGZmSihjTxkpGMqIiIjMjKGMasKmoSwxMREDBw5EcHAwNBoNVq9ebbD9xx9/RExMDBo1agSNRoOUlJQK+ygqKsLkyZPRqFEjNGzYEEOHDkV2drZBm4yMDAwYMAANGjRAkyZNMH36dJSVlRm0+fPPP9GtWze4u7ujbdu2+Oyzzyoc6/3330fLli3h4eGByMhI7Ny5s7angIiI6iEOX1JN2DSUFRQUICIiAu+//36V23v16oX58+dXuY+nn34av/76K1atWoW//voL586dw/33369u1+l0GDBgAEpKSrB9+3Z8/vnn+OyzzzBnzhy1TXp6OgYMGIA777wTKSkpmDp1Kh599FFs3LhRbbNy5UpMmzYNL774Ivbu3YuIiAjExsbiwoULZjgTRERUn7CnjGpE7AQA+emnnyrdlp6eLgBk3759Bs/n5uaKq6urrFq1Sn3uyJEjAkCSkpJERGTdunXi5OQkWVlZapulS5eKj4+PFBcXi4jIjBkzpEOHDgb7fvDBByU2Nlb9umfPnjJ58mT1a51OJ8HBwTJv3rwq31NRUZFotVr1kZmZKQBEq9Xe+GQQEVGdtmLFCgEgd955Z7Vtf/75ZwEgkZGRVqiMakKr1Vrl87tOzynbs2cPSktLER0drT4XHh6OFi1aICkpCQCQlJSETp06ITAwUG0TGxuLvLw8HDp0SG1Tfh9KG2UfJSUl2LNnj0EbJycnREdHq20qM2/ePPj6+qqPkJCQ2r9pIiKyexy+pJqo06EsKysLbm5u8PPzM3g+MDAQWVlZapvygUzZrmy7UZu8vDwUFhbin3/+gU6nq7SNso/KzJo1C1qtVn1kZmbW6H0SEVHdwuFLqgkXWxdQn7m7u6t/ARERkeNgKKOaqNM9ZUFBQSgpKUFubq7B89nZ2QgKClLbXH81pvJ1dW18fHzg6emJxo0bw9nZudI2yj6IiIgUHL6kmqjToax79+5wdXXFpk2b1OfS0tKQkZGBqKgoAEBUVBQOHjxocJVkQkICfHx8cMstt6htyu9DaaPsw83NDd27dzdoo9frsWnTJrUNERGRgj1lVBM2Hb7Mz8/H8ePH1a/T09ORkpKCgIAAtGjRAjk5OcjIyMC5c+cAXAtcwLWeraCgIPj6+mL8+PGYNm0aAgIC4OPjgyeeeAJRUVG47bbbAAAxMTG45ZZbMHr0aCxYsABZWVl44YUXMHnyZPWvk0mTJuG9997DjBkz8Mgjj+CPP/7Ad999h7Vr16q1TZs2DWPHjkWPHj3Qs2dPvPvuuygoKMC4ceOsdbqIiKiOYE8Z1YhFr+2sxubNmwVAhcfYsWNFROTTTz+tdPuLL76o7qOwsFD++9//ir+/vzRo0ECGDBki58+fNzjOqVOn5J577hFPT09p3LixPPPMM1JaWlqhli5duoibm5u0bt1aPv300wr1LlmyRFq0aCFubm7Ss2dP2bFjh0nv11qX1BIRkW099thjAkDmzp1bbdtz584JAHFychK9Xm+F6shU1vr81oiI2CIMOqK8vDz4+vpCq9XCx8fH1uUQEZGFjB07Fl988QXmz5+PGTNm3LDt5cuXERAQAODaEkyurq7WKJFMYK3P7zo9p4yIiMge1WT4EuAQpqNjKCMiIjKzmoYyTvZ3bAxlREREZmZKKHN2dlaHLBnKHBtDGRERkZldvXoVANCgQQOj2vMKTAIYyoiIiMwuPz8fAODt7W1Ue65VRgBDGRERkdkpoczLy8uo9uwpI4ChjIiIyOyUUNawYUOj2rOnjACGMiIiIrMrKCgAwFBGpmEoIyIiMiOdTqdO9Dc2lHH4kgCGMiIiIrNSAhnAnjIyDUMZERGRGSnzyZycnNSwVR2GMgIYyoiIiMyq/CR/jUZj1Gs4fEkAQxkREZFZmXrlJcCeMrqGoYyIiMiMahLK2FNGAEMZERGRWbGnjGqKoYyIiMiMGMqophjKiIiIzIjDl1RTDGVERERmxJ4yqimGMiIiIjNiKKOaYigjIiIyIyWUeXl5Gf0aDl8SwFBGRERkVqbejBxgTxldw1BGRERkRpzoTzXFUEZERGRGnFNGNcVQRkREZEYMZVRTDGVERERmxOFLqimGMiIiIjNiTxnVFEMZERGRGTGUUU0xlBEREZkRhy+pphjKiIiIzIg9ZVRTDGVERERmIiLsKaMaYygjIiIyk+LiYuh0OgDsKSPTMZQRERGZidJLBph270uGMgJqEMoeeeQRfPbZZ+rXp0+fxvr166HVas1ZFxERUZ2jhDJPT084Ozsb/Tpl+LKkpAQiYpHayP6ZHMrWrVuH8PBwAEBubi66d++OuLg43HLLLUhLSzN7gURERHWFcjNyU3rJgH97ygDOK3NkJocyrVaLZs2aAQB++OEHBAUFIS8vDw8++CBmzZpl9gKJyHHo9XosWrQI+/fvt3UpRDVSk0n+gGEo4xCm4zI5lIWEhCA9PR0AsGrVKjz88MNwd3fHpEmTsG3bNrMXSESO48cff8TUqVPx+OOP27oUohqpaShzdXVV/589ZY7LxdQXPPzww3jyyScxcOBAbNq0Ce+99x6Aa3/hlp/gSERkKuUPu4MHD0JEoNFobFwRkWlqGso0Gg08PDxQVFTEnjIHZnJP2axZszBs2DAkJibijTfeQNu2bQEAu3btQosWLUzaV2JiIgYOHIjg4GBoNBqsXr3aYLuIYM6cOWjatCk8PT0RHR2NY8eOGbTJycnBqFGj4OPjAz8/P4wfP75CODxw4AB69+4NDw8PhISEYMGCBRVqWbVqFcLDw+Hh4YFOnTph3bp1JtdCRLWTnJwM4NoH2/nz521cDZHpahrKAK5VRjUIZRqNBs8//zz++usvPPPMM+rzWVlZGDlypEn7KigoQEREBN5///1Kty9YsACLFy/GsmXLkJycDC8vL8TGxhr8FTFq1CgcOnQICQkJWLNmDRITEzFx4kR1e15eHmJiYhAaGoo9e/Zg4cKFmDt3LpYvX6622b59O+Lj4zF+/Hjs27cPcXFxiIuLQ2pqqkm1EFHNlZSUYO/everXvHCI6qLahDIui0EQE0VFRYlWqzX1ZdUCID/99JP6tV6vl6CgIFm4cKH6XG5urri7u8s333wjIiKHDx8WALJr1y61zfr160Wj0cjZs2dFROSDDz4Qf39/KS4uVtvMnDlTwsLC1K+HDx8uAwYMMKgnMjJSHnvsMaNrMYZWqxUAFjl/RHXd7t27BYD6+OCDD2xdEpHJ3nzzTQEgDz30kMmvDQ0NFQCSnJxsgcqoNqz1+W1yT9mOHTsqTfF5eXmYOXNmbfKhgfT0dGRlZSE6Olp9ztfXF5GRkUhKSgIAJCUlwc/PDz169FDbREdHw8nJSR0GSUpKQp8+feDm5qa2iY2NRVpaGi5fvqy2KX8cpY1yHGNqqUxxcTHy8vIMHkRUOeVnVsGeMqqLOHxJtWF0KHvggQfwxhtvQKPR4MKFCxW2FxQU4M033zRbYVlZWQCAwMBAg+cDAwPVbVlZWWjSpInBdhcXFwQEBBi0qWwf5Y9RVZvy26urpTLz5s2Dr6+v+ggJCanmXRM5LiWUKUvuMJRRXcThS6oNo6++bNGiBdasWQMRQUREBBo1aoSIiAhERESgS5cuSEtLQ9OmTS1Za50za9YsTJs2Tf06Ly+PwYyoCkooe+ihhzB//nyGMqqTGMqoNowOZW+//TYAwM3NDdu2bcO5c+ewb98+pKSk4KeffoJer6/0qsaaCgoKAgBkZ2cbhL3s7Gx06dJFbXN9r11ZWRlycnLU1wcFBSE7O9ugjfJ1dW3Kb6+ulsq4u7ur3dFEVLXc3Fw1hI0ePRrz58/HqVOnUFRUZLCoJpG94/Al1YbJc8oKCgrQo0cPDB48GHPnzsXq1atx4sQJpKenm3z15Y20atUKQUFB2LRpk/pcXl4ekpOTERUVBQCIiopCbm4u9uzZo7b5448/oNfrERkZqbZJTExEaWmp2iYhIQFhYWHw9/dX25Q/jtJGOY4xtRBRze3atQvAtZ+1W265Bb6+vhARHD9+3MaVEZmGPWVUGyaHMldXV7Mt6Jifn4+UlBSkpKQAuDahPiUlBRkZGdBoNJg6dSpeffVV/PLLLzh48CDGjBmD4OBgxMXFAQBuvvlm9O/fHxMmTMDOnTuxbds2TJkyBSNGjEBwcDAAYOTIkXBzc8P48eNx6NAhrFy5EosWLTIYVnzqqaewYcMGvPXWWzh69Cjmzp2L3bt3Y8qUKQBgVC1EVHPK0GVkZCQ0Gg3CwsIAAEePHrVlWUQmM0coY0+Z4zJ5Rf9du3bh2WefxcWLF9G2bVt06dJFfZi6eOzu3btx5513ql8rQWns2LH47LPPMGPGDBQUFGDixInIzc1Fr169sGHDBoPhjK+//hpTpkxBv3794OTkhKFDh2Lx4sXqdl9fX/z222+YPHkyunfvjsaNG2POnDkGa5ndfvvtWLFiBV544QU899xzaNeuHVavXo2OHTuqbYyphYhqZufOnQCg9nCHhYVh586dnFdGdY5yQ/LaDF+yp8xxmRzKRo8ejRYtWmDixIlIT0/HX3/9hUWLFuHy5cvw9/fHpUuXjN5X3759ISJVbtdoNHj55Zfx8ssvV9kmICAAK1asuOFxOnfujC1bttywzbBhwzBs2LBa1UJEphMRg54yAAgPDwfAKzCp7lF6yry8vEx+LYcvyeRQlpmZibVr16JNmzYGz58+fVodhiQiMtbp06dx4cIFuLi4qBfOKMOXDGVU13CiP9WGyaEsKioKZ8+erRDKQkNDERoaarbCiMgxKL1kERER8PT0BGAYyoQ3Jqc6hBP9qTZMnuj/9NNP4+WXX0ZOTo4l6iEiB6NceakMXQJA27ZtodFooNVqK12smsheMZRRbZjcUzZw4EBoNBq0b98egwcPRlRUFLp27YpOnToZ3MqIiMgYZ8+eBXAtiCk8PDzQsmVLpKenIy0trcLdNIjskU6nQ2FhIQCGMqoZk3vKjh07hu+//x5TpkxBTk4OXn/9ddx6663w9vZG586dLVEjEdVjyj1hfX19DZ7nshhU1yhXXgI1C2XK8L0S7MjxmNxT5u/vjyFDhmDIkCHqc3l5edi/fz8OHDhg1uKIqP5TQpmPj4/B82FhYdiwYQMn+1OdoQxdOjs71+huLgxlZHIoa9y4MZo1a2Zw38uIiAj06tULvXv3tkSNRFSPabVaABV7yrgsBtU15eeT1eTiFIYyMjmUHTx4ECkpKdi/fz927dqF5cuXIycnBx4eHujUqRN27NhhiTqJqJ66UU8ZwFBGdUdtJvkD/4ayq1evmq0mqltMDmUdOnRAhw4dMGrUKADXFn7csGEDnnjiCdx1111mL5CI6rfqQll6ejqKi4trNBxEZE3mCmXsKXNcJk/0v55Go8E999yDr776CllZWeaoiYgchIhUGcqaNm0KV1dX6HQ6LotBdUJtQ1mDBg0AMJQ5slqHMsVtt92GzZs3m2t3VAcVFxdz/ToySWFhIXQ6HYCKc8o0Gg38/PwAALm5uVaujMh07Cmj2jJ5+LJhw4bo1KkTIiIi0LlzZ0RERCA8PBy7du3ClStXLFEj1RGPPPIIvv/+exw6dMhgzSmiqiiT/DUaTaX3CvTz88PFixcZyqhOqM3NyAHOKaMahLLvv/8eKSkpSElJwaJFi3DixAn1NiivvPKKJWqkOqCoqAg//PADSkpKkJyczFBGRik/dFnZ1WrsKaO6hD1lVFsmh7L+/fujf//+6tdXr15Feno6GjVqhKCgILMWR3XHzp071Zvonjt3zsbVUF1R1XwyBUMZ1SVKKKus19cYnFNGJoey6zVo0AAdOnQwRy1UhyUmJqr/r9w2h6g6DGVUn7CnjGrL5In+ZWVleO211xAVFYVu3bph7NixSEhIsERtVIf89ddf6v+zp4yMVdXCsQqGMqpLzBXKioqKoNfrzVYX1R0mh7Jnn30WH3zwAfr164e4uDgUFxfjvvvuw7hx4yAilqiR7FxpaSm2b9+ufs1QRsZiTxnVJ+YKZQBvSu6oTB6+XLFiBb799lv06dNHfS49PR333Xcf3nzzTUyfPt2sBZL927Nnj8HVQhy+JGMxlFF9Ys5QVlhYqM4xI8dhck9ZQUEBmjdvbvBcq1atsGTJEixfvtxshVHdoQxddu3aFcC1njL2mpIxGMqoPqltKHNxcYGrqysAzitzVCaHsl69euHzzz+v8HyrVq04bOWglFA2YsQIAEBJSQkXkSWjcE4Z1Se1DWUAJ/s7OpND2fz58/Huu+/iySefxLFjxwBcm1O0ZMkS3HLLLWYvkOybTqfD1q1bAQB33303GjduDIBDmGQc9pRRfWLOUMYFZB2TyaGsY8eO+PPPP5GUlISwsDB4eHigQYMG+PLLL/Huu+9aoESyZykpKbhy5Qp8fX3RuXNnBAcHA+BkfzIOQxnVJ+YIZVyrzLGZPNF/+/bt8PHxwa5du3D06FEcPnwY3t7eiIyMrPIXK9VfytBlr1694OzsjGbNmuHAgQMMZWQUhjKqTzh8SbVlck/Z5MmTkZycDAAIDw/H/fffj7vvvhsXL17kvS8dkLJo7B133AEAak8Zhy/JGEooM2ZOGS8eIXvHUEa1ZXIoS0tLQ9++fSs8//vvvyM+Pt4cNVEdodfrsWXLFgBQl0jh8CWZQpnoX11PmV6vVz/wiOyRiNT6huQA55Q5OpNDmY+PDy5fvlzh+d69e2PHjh1mKYrqhszMTOTk5MDV1RXdunUDADRr1gwAQxkZp7rhS09PT3WJAA5hkj0rLi6GTqcDwDllVHMmh7L+/fvjzTffrLgjJyeUlJSYpSiqG5RlLxo3bqx+cHL4kkxRXSjTaDTw9/cHwFBG9u3SpUsAAGdn5xrfkBzg8KWjMzmUvfLKK/jrr78wdOhQHDx4EMC120HMnz8fnTt3NnuBZL+UUBYQEKA+x+FLMpaIVDunDOBkf6obsrKyAACBgYFwcjL5o1XFUObYTL76MiQkBDt27MDjjz+OiIgIuLu7o6ysDL6+vvj1118tUSPZKSWUKT0ZwL/Dl9nZ2SgrK4OLi8nfYuQgrl69qg733OjKbYYyqguUUBYUFFSr/XBOmWOr0SdmaGgo1q1bh4yMDKSkpMDV1RWRkZEGPSZU/1XWU3bTTTfB2dkZOp0O2dnZakgjup7SS6bRaG443MNQRnVBdnY2gNqHMs4pc2y16sZo0aIFWrRoYa5aqI5RLvgoH8qcnZ0RFBSEs2fP4ty5cwxlVKXy88k0Gk2V7RjKqC4oP3xZGxy+dGw1H/gmh1dZTxnAKzDJOMbMJwMYyqhuMPfwJUOZY2IooxqrbE4ZwCswyTjVrVGmUEJZZUvxENkLcw1fck6ZY2MooxqrbPgS4BWYZJzqlsNQsKeM6gJzDV9yTpljYyijGuPwJdUGQxnVJxy+JHNgKKMaqyqUcfiSjME5ZVSfmHv4kqHMMTGUUY1VN6eMPWV0I+wpo/qisLBQnSPJqy+pNuw+lF25cgVTp05FaGgoPD09cfvtt2PXrl3qdhHBnDlz0LRpU3h6eiI6OhrHjh0z2EdOTg5GjRoFHx8f+Pn5Yfz48RVubnzgwAH07t0bHh4eCAkJwYIFCyrUsmrVKoSHh8PDwwOdOnXCunXrLPOm64iq5pRx+JKMYepEf4YysldKL5m7u3u1Pb/VUeaUcaK/Y7L7UPboo48iISEBX375JQ4ePIiYmBhER0erQ2MLFizA4sWLsWzZMiQnJ8PLywuxsbEoKipS9zFq1CgcOnQICQkJWLNmDRITEzFx4kR1e15eHmJiYhAaGoo9e/Zg4cKFmDt3LpYvX6622b59O+Lj4zF+/Hjs27cPcXFxiIuLQ2pqqvVOhh0pLi5GQUEBgKqHL3NycvjXHlWJPWVUX5SfT3ajNfeMwZ4yByd27OrVq+Ls7Cxr1qwxeL5bt27y/PPPi16vl6CgIFm4cKG6LTc3V9zd3eWbb74REZHDhw8LANm1a5faZv369aLRaOTs2bMiIvLBBx+Iv7+/FBcXq21mzpwpYWFh6tfDhw+XAQMGGNQRGRkpjz32mNHvR6vVCgDRarVGv8ZenT9/XgCIRqMRnU5nsE2v14uHh4cAkBMnTtioQrJ3I0aMEADy7rvv3rDduXPnBIA4OTlV+F4jsgerV68WABIZGVnrfSUlJQkAadWqlRkqI3Ox1ue3XfeUlZWVQafTwcPDw+B5T09PbN26Fenp6cjKykJ0dLS6zdfXF5GRkUhKSgIAJCUlwc/PDz169FDbREdHw8nJCcnJyWqbPn36wM3NTW0TGxuLtLQ0dYguKSnJ4DhKG+U4lSkuLkZeXp7Bo75Q5pP5+flVuPmuRqPhECZVy9SeMr1eX2HaAZE9MNdyGAB7yhydXYcyb29vREVF4ZVXXsG5c+eg0+nw1VdfISkpCefPn6/yByEwMFDdlpWVhSZNmhhsd3FxQUBAgEGbyvahbLtRG2V7ZebNmwdfX1/1ERISYuopsFtVzSdT8ApMqo6xc8o8PDzUP5g4hEn2yFzLYQCcU+bo7DqUAcCXX34JEUGzZs3g7u6OxYsXIz4+vkLvjD2aNWsWtFqt+sjMzLR1SWZT1XIYCl6BSdUxtqdMo9FwXhnZNXMthwGwp8zR2X2yadOmDf766y/k5+cjMzMTO3fuRGlpKVq3bq3+ACg/EIrs7Gx1W1BQEC5cuGCwvaysDDk5OQZtKtuHsu1GbW70Q+ju7g4fHx+DR31R1XIYCmX4kj1lVBVj1ykDONmf7Jslhi9LS0uh0+lqvT+qW+w+lCm8vLzQtGlTXL58GRs3bsTgwYPRqlUrBAUFYdOmTWq7vLw8JCcnIyoqCgAQFRWF3Nxc7NmzR23zxx9/QK/XIzIyUm2TmJiI0tJStU1CQgLCwsLU0BEVFWVwHKWNchxHU11P2U033QQAuHTpktVqorrF2J4ygKGM7Js5hy+VUAawt8wR2X0o27hxIzZs2ID09HQkJCTgzjvvRHh4OMaNGweNRoOpU6fi1VdfxS+//IKDBw9izJgxCA4ORlxcHADg5ptvRv/+/TFhwgTs3LkT27Ztw5QpUzBixAh1iG3kyJFwc3PD+PHjcejQIaxcuRKLFi3CtGnT1DqeeuopbNiwAW+99RaOHj2KuXPnYvfu3ZgyZYotTovNVTenTOn9UOYNEZUnIgxlVG+YM5SVv7CN88ocj4utC6iOVqvFrFmzcObMGQQEBGDo0KF47bXX4OrqCgCYMWMGCgoKMHHiROTm5qJXr17YsGGDwTf2119/jSlTpqBfv35wcnLC0KFDsXjxYnW7r68vfvvtN0yePBndu3dH48aNMWfOHIO1zG6//XasWLECL7zwAp577jm0a9cOq1evRseOHa13MuxIdT1lDGV0I1evXlWHZhjKqC4TEXVqizmGL52cnODh4YGioiL2lDkguw9lw4cPx/Dhw6vcrtFo8PLLL+Pll1+usk1AQABWrFhxw+N07twZW7ZsuWGbYcOGYdiwYTcu2EFUN6eMoYxuROklc3JygpeXV7XtGcrIXuXn56s9WuYIZcC1IUyGMsdk98OXZJ+MHb7khyhVpvzQpTEroDOUkb1Shi4bNmyIhg0bmmWfvALTcTGUUY1w+JJqw5T5ZABDGdkvcy6HoVBCGeeUOR6GMqoRU0KZiFitLqobjF04VqEMkzOUkb0x53IYCmUBWfaUOR6GMqoRY+eUlZaWGtwcnggwbY0ygD1lZL/MeeWlgsOXjouhjEym1+vVD8eqesq8vb3VuUIcwqTrcfiS6gtLDl8ylDkehjIyWV5eHvR6PYCqe8qcnJzUD1yGMroeQxnVF5YYvmQoc1wMZWQyZejS09PTYD2463GyP1XF1DllDGVkrywxfMmbkjsuhjIyWXWT/BUMZVSVms4p02q1ai8tkT3gnDIyJ4YyMll1a5QpGMqoKjUdvtTr9cjPz7dUWUQmM+dq/gqGMsfFUEYmM7WnjENOdD1TQ5mHhwfc3d0B8PuJ7IeIsKeMzIqhjExW3XIYCvaUUVVMnVMGcF4Z2Z/Lly+jtLQUgGXWKeOcMsfDUEYm45wyqi1T55QBDGVkf5ShS39/f7Un1xzYU+a4GMrIZJxTRrVl6vAl8G8oU77/iGzNEsthAAxljoyhjExmbE9Z+SvmiMpjKKP64Ny5cwAYysh8GMrIZJxTRrVVkzlljRs3BgD8888/FqmJyFSHDx8GAISFhZl1v5xT5rgYyshknFNGtVFWVqbOC2vUqJHRr1N6I5QhIyJbO3jwIACgU6dOZt0ve8ocF0MZmYxzyqg2yk/Ur663tTwllCmTq4ls7cCBAwCAzp07m3W/DGWOi6GMTMaeMqoN5fvH19cXLi4uRr+OoYzsiVarxenTpwGwp4zMh6GMTGbqnDIuYUDlXbp0CUD1of56DGVkT1JTUwEAzZs3N6nH1xicU+a4GMrIJIWFhSgqKgJgWk+ZiFi8NqobjO1pvZ6yYjpDGdkDS80nA9hT5sgYysgkynwyZ2fnaq+cU0JZWVkZf7mQSukpM2WSP/BvT9nFixeh0+nMXheRKZT5ZAxlZE4MZWQSpZfDz88PGo3mhm0bNmyotuG8MlLUtKfspptugkajgV6vV4Mdka0oPWXmnuQPMJQ5MoYyMokpH6hOTk6c7E8V1DSUubi4qL1rXBaDbElELDp8qcwpKyws5NQPB8NQRiYxdjkMBUMZXa+mw5cAJ/uTfcjMzIRWq4WLiwvCw8PNvn+lp0yn06k3PCfHwFBGJjG1l4OhjK5X054ygKGM7IPSSxYeHg43Nzez718JZQCHMB0NQxmZRPllFBoaalR7hjK6Xm1CGa/AJHtgqUVjFW5ubup8XIYyx8JQRibZvHkzAOCOO+4wqj1DGV2Pw5dU11lyPhkAaDQag3ll5DgYyshoOTk52L9/PwCgb9++Rr2GC8jS9Th8SXWdpXvKgH+HMLmArGNhKCOjJSYmQkQQHh6uDiNVhz1ldD2GMqrLiouLkZaWBsByPWUAl8VwVAxlZLQ///wTAHDnnXca/RqGMiqvrKxM/V6ozfAll8QgWzl69CjKysrg5+eH5s2bW+w4DGWOiaGMjKbMJzN26BJgKCNDypIqwLUFiE3FnjKytfLzyapbQLs2OKfMMTGUkVEuXbqkzqMwJZQpH7wMZQT8O3Tp6+sLFxcXk1+vDJtfvHgRer3erLURGcMa88kAzilzVAxlZJS//voLAHDLLbegSZMmRr+OPWVUXm2uvASu3WoJuLaoJm+1RNYmIti4cSMAoGvXrhY9FocvHRNDGRlFGbo0ZT4ZwFBGhmozyR8AXF1d1UDHIUyytuTkZBw4cAAeHh64//77LXoshjLHxFBGRlEm+ZsydAkwlJEhpXerpqEM4Lwysp0PP/wQADB8+HD4+/tb9FicU+aYGMqoWhcvXkRqaioA4xeNVTCUUXlKT1lNhy8BhjKyjdzcXKxcuRIA8Nhjj1n8eJxT5pgYyqhaynyyjh07qnN6jFU+lImI2WujuqW2w5cAl8Ug2/jyyy9RWFiIjh07IioqyuLH4/ClY7LrUKbT6TB79my0atUKnp6eaNOmDV555RWDD3cRwZw5c9C0aVN4enoiOjoax44dM9hPTk4ORo0aBR8fH/j5+WH8+PHIz883aHPgwAH07t0bHh4eCAkJwYIFCyrUs2rVKoSHh8PDwwOdOnXCunXrLPPG7UxN55MB/4aysrIy/sVHtZ7oD/D+l2R9IqIOXT722GMWXQpDwVDmmOw6lM2fPx9Lly7Fe++9hyNHjmD+/PlYsGABlixZorZZsGABFi9ejGXLliE5ORleXl6IjY1FUVGR2mbUqFE4dOgQEhISsGbNGiQmJmLixInq9ry8PMTExCA0NBR79uzBwoULMXfuXCxfvlxts337dsTHx2P8+PHYt28f4uLiEBcXpw7r1VcigvXr1wMA7rrrLpNf37BhQzg5Xfs24xAmmbOnjKGMrGX79u04dOgQPD098dBDD1nlmAxlDkrs2IABA+SRRx4xeO7++++XUaNGiYiIXq+XoKAgWbhwobo9NzdX3N3d5ZtvvhERkcOHDwsA2bVrl9pm/fr1otFo5OzZsyIi8sEHH4i/v78UFxerbWbOnClhYWHq18OHD5cBAwYY1BIZGSmPPfaY0e9Hq9UKANFqtUa/xtb2798vAMTDw0Py8/NrtA8/Pz8BIIcPHzZzdVTX3H333QJAvvjiixrv45NPPhEA0r9/fzNWRlS10aNHCwB5+OGHrXbMV155RQDIxIkTrXZMqpq1Pr/tuqfs9ttvx6ZNm/D3338DAPbv34+tW7finnvuAQCkp6cjKysL0dHR6mt8fX0RGRmJpKQkAEBSUhL8/PzQo0cPtU10dDScnJyQnJystunTpw/c3NzUNrGxsUhLS1NXIE9KSjI4jtJGOU5liouLkZeXZ/Coa3766ScAQExMDLy8vGq0Dy4gSwpzDF+yp4ysKTc3F6tWrQJgnQn+Ck70d0ymL6ltRc8++yzy8vIQHh4OZ2dn6HQ6vPbaaxg1ahSAfyf6Kr+kFYGBgeq2rKysCouduri4ICAgwKBNq1atKuxD2ebv74+srKwbHqcy8+bNw0svvWTq27Yrq1evBgDExcXVeB+8ApMUHL6kuubbb79FUVEROnbsiMjISKsdl8OXjsmue8q+++47fP3111ixYgX27t2Lzz//HG+++SY+//xzW5dmlFmzZkGr1aqPzMxMW5dkklOnTiElJQVOTk4YOHBgjffDUEYKc4ayCxcu8FZLZHGffPIJAOCRRx6xygR/BUOZY7LrnrLp06fj2WefxYgRIwBcuwHs6dOnMW/ePIwdO9bgKqymTZuqr8vOzkaXLl0AXLtS68KFCwb7LSsrQ05Ojvr6oKCgCn91K19X10bZXhl3d3e4u7ub+rbtxs8//wwA6N27Nxo3blzj/TCUEQCUlpaqQ/i1Gb5Uer6Vn+PafG8S3cjBgwexa9cuuLi4WG2Cv4KLxzomu+4pu3r1qnrlnsLZ2Vn967hVq1YICgrCpk2b1O15eXlITk5W15GJiopCbm4u9uzZo7b5448/oNfr1a7oqKgoJCYmorS0VG2TkJCAsLAwddXmqKgog+MobayxXo2tmGPoEmAoo2uU+ZnAv/MMa8LNzU3taeMQJlnSp59+CgAYOHCgyWs01hbnlDkmuw5lAwcOxGuvvYa1a9fi1KlT+Omnn/D2229jyJAhAACNRoOpU6fi1VdfxS+//IKDBw9izJgxCA4OVoPEzTffjP79+2PChAnYuXMntm3bhilTpmDEiBEIDg4GAIwcORJubm4YP348Dh06hJUrV2LRokWYNm2aWstTTz2FDRs24K233sLRo0cxd+5c7N69G1OmTLH6ebGGS5cuITExEQBDGZmHMsnfz88Pzs7OtdoX55WRpZWUlODLL78EcG3o0to4fOmgLHptZy3l5eXJU089JS1atBAPDw9p3bq1PP/88wZLV+j1epk9e7YEBgaKu7u79OvXT9LS0gz2c+nSJYmPj5eGDRuKj4+PjBs3Tq5cuWLQZv/+/dKrVy9xd3eXZs2ayRtvvFGhnu+++07at28vbm5u0qFDB1m7dq1J76cuLYnx6aefCgDp0qVLrff13HPPCQCZMmWKGSqjumrr1q0CQNq0aVPrffXt21cAyIoVK8xQGVFFP/74owCQoKAgKS0ttfrxt2zZIgCkXbt2Vj82VWStz2+7nlPm7e2Nd999F++++26VbTQaDV5++WW8/PLLVbYJCAjAihUrbniszp07Y8uWLTdsM2zYMAwbNuyGbeoLcw1dAuwpo2vMMclfwZ4ysjRlgv/YsWPh4mL9j8qGDRsCAK5cuWL1Y5Pt2PXwJdlGfn4+fvvtNwAMZWQ+yvAlQxnZu5SUFPU2euPGjbNJDfy96ZgYyqiCn3/+GYWFhWjbti06d+5c6/1x8VgC/u0pq82Vlwre/5Is5dNPP0VUVBT0ej3uuusuhIWF2aQOJZQVFhYaXIRG9RtDGVXwzTffALh2AYQ51uXhX3wEmHf4slmzZgCA48eP13pfRMC1qxzHjRuHRx55BEVFRejfvz9Wrlxps3p8fHzU/6+Ld4OhmmEoIwP//PMPNm7cCACIj483yz4Zyggw7/ClspzNzp07UVxcXOv9kWNLS0tDZGQkPvvsMzg5OeHVV1/F2rVrbboGnouLi3prO/7udBwMZWTg+++/R1lZGbp164bw8HCz7FMZrvrnn3/Msj+qm8w5fNm+fXs0adIExcXF2L17d633R45r5cqV6NGjB1JTUxEYGIjff/8dzz//fIU1Mm2Bf9A6Htt/15FdUa5SHTlypNn2qcz/uXLlCgoKCsy2X6pbzDl8qdFo0KtXLwCo9qppouuJCJKSkhAfH48RI0YgPz8fffv2RUpKCu68805bl6dShjAZyhwHQxmpMjIysGXLFmg0Gjz44INm26+3t7e6EOKNbuBO9Zs5hy+Ba7f/AhjKyDQrVqxAREQEbr/9dnz77bcAgOeffx4JCQk3vG2eLbCnzPHY9TplZF3KL6g+ffqgefPmZtuvRqNB06ZNcfLkSWRlZaFNmzZm2zfVHeYcvgT+DWXbtm2DTqer9V0CqP5LSkrCqFGjAFxbMf/BBx/E5MmT0aNHDxtXVjmGMsfDUObArly5gk2bNiE4OBjt27e3yNClIigoSA1l5JjM3VMWERGBhg0bQqvVIjU1FREREWbZL9VfypXlAwYMwFdffVWre7BagxLKePWl42Aoc1Aigvj4eKxdu9bgeVdXVwwdOtTsx1OGBRjKHFNJSQny8/MBmC+Uubi44D//+Q82btyIxMREhjK6Ib1ejx9++AEA8Nhjj9l9IAPYU+aIOKfMQa1evRpr166Fi4sLmjZtqj4/bNgwsw0vlacc4/z582bfN9m/y5cvA7g2lG3OD0POKyNjJSUl4dy5c/Dx8UFMTIytyzEKQ5njYShzQAUFBXjqqacAADNmzMC5c+eQl5eHQ4cOqfd7Mzf2lDk2ZejSz8/PrHO/yocyETHbfqn+WbVqFQBg0KBBcHd3t3E1xuHVl46HocwBvfLKK8jMzERoaCief/55ANeukLzlllss9suKocyxXbhwAQDMvhhnz5494ebmhqysLJw4ccKs+6b6Q6/X4/vvvwdwbTSgrmBPmeNhKHMwR44cwVtvvQUAWLx4MRo0aGCV4yqhjMOXjkm5HVLr1q3Nul8PDw/ceuutADiESVXbsWMHzp49C29v7zozdAkwlDkihjIHIiKYPHkyysrKMHDgQAwaNMhqx1bmlLGnzDEdO3YMANCuXTuz75vzyqg6Si/ZwIED4eHhYeNqjMdQ5ngYyuqJ5ORkfPTRRygpKamyzeeff47NmzfD09MTixYtsmJ1//aUZWdnQ6/XW/XYZHvWCGWbNm3ih1c998knn6B3795IS0szeL6oqAiPPvoonnzySfWiEkVdHboEuCSGI2IoqwfWr1+PPn36YMKECYiMjERqamqFNhcuXMAzzzwDAHjppZfQqlUrq9bYpEkTaDQa6HQ6ddI3OQ5LhrJevXrB19cXGRkZ6N69O/bu3Wv2Y5D1FBQU4Mknn8Rff/1l8HxRURFmzJiBrVu3YsiQIeoSKyKC//73v/j444+xZMkS3HLLLfj555/V16xYsQKZmZlo2LAhYmNjrf5+aoM9ZQ5IyGq0Wq0AEK1Wa7Z9JiQkiLu7uwAQZ2dnASBubm6ycOFCKS0tVdvFx8cLAOnSpYvB89Z00003CQDZv3+/TY5PtqHT6cTDw0MAyLFjxyxyjOTkZAkNDVW//99//33R6/UWORYZ7+zZs7J48WK5dOmS0a9ZuHChAJBmzZpJcXGx+vyKFSsEgPp48MEHRa/Xy7JlywSAODk5SevWrdXtERER6vcdAImPj7fEW7Sov//+WwCIt7e3rUtxeJb4/K4MQ5kVKf+oubm5smHDBnnnnXekqKioxvv7888/xdPTUwDI4MGDJSMjQ+677z71l1CrVq3k/ffflx9++EH9pbVr1y4zviPTdOrUSQDIxo0bbVYDWV9GRoYAEBcXF4v+QZCTkyODBw9Wv/8nT54sZWVlFjse3djp06elZcuWAkB69eolJSUlRr3u1ltvVf8NP/30U/X5vn37CgAZNGiQuLi4CACZOHGiuLq6CgCZN2+eFBYWyrPPPitOTk7qPpo2bSqjR4+W9PR0y7xRC8rOzlbfB7+XbYuhrB5S/lFvueUW9Qdt7ty5NdrX3r17xcvLSwDIvffeq4Y7vV4vH330kTRq1Mjgr0oA8vTTT5vz7Zjs7rvvFgDy+eef27QOsq5NmzYJAGnXrp3Fj6XX62XhwoWi0WgEgAwfPtyoP3y++eYb8fLyki+++MLiNdq7f/75p9a9jGfOnJE2bdoY/P555plnqn3dyZMnDV5z8803i06nk7S0NPUPy9OnT8uiRYsM2t1///0GNR84cEA+++wzOXz4cJ3uMS0qKlLf4+XLl21djkNjKKuHlH9UAOpfd/7+/pKXl1fla/Ly8mTfvn0Gv1jOnj0rzZo1EwBy1113SWFhYYXXFRQUyJIlS9QhndDQULly5YpF3pexxowZIwDkjTfesGkdZF3K8NKAAQOsdsxvv/1W/Rnr16/fDX/GiouLJSQkRABIw4YN62SPirl8++234uzsLAMGDKj094qiqKhItmzZUmnP5/nz56V9+/Zqb/17772n/t774Ycfbnj8+fPnCwDp2bOn+Pj4CAD5+eef5X//+5/B95Ber5cHH3xQAEh4ePgN/33rOmV6yqlTp2xdikNjKKuHlH/UuXPnyj///CNhYWECQObPn19p+zNnzkjbtm0FgAwcOFBOnz4t+fn50r17d/WvyOr+eiopKZGNGzfKmTNnLPCOTDNjxgwBIFOnTrV1KWRF06ZNs8m/e0JCgjRs2FDtSanKxx9/bNDr0q9fP7vpXSkrK5Nt27bJc889J2PGjJEXX3xRvvjiC9mzZ4/Zj3XlyhUJCgpSz8OAAQMq7WXcsWOH2ts/bty4CvX26NFDAEiLFi3UIPHMM88IAPHx8ZG///67yhqU323Lli2TmTNnCgCJjIyUxo0bqwFNUVhYKCtWrJALFy6Y6QzYpyZNmnAurh1gKKuHrv9H/eyzzwSANGnSRAoKCgzanjt3Tv1rU3l4eXlJz549BYA0btxYTpw4YYu3UWNvv/22AJARI0bYuhSyooEDBwoAef/9961+7KSkJHX+0ffff19he2lpqfqHz+OPP67O0fzwww+tXmt5xcXF8sQTT1Q6DUF5vPDCCzfcR0lJiezbt8/oeXzPPfecOsG+/FzV4uJiKS0tlYyMDJk2bZrBfC0AsmPHDnUfSq+Yn5+fHD9+3KCWXr16CQDp2rVrpfPLjh8/rg5RXrhwQc6dOydubm7qcYKDg212kZIttWvXTgDIli1bbF2KQ2Moq4eu/0ctKSlRJ8IuWrRIbZeVlSXh4eHqsOPGjRuld+/e6i8nNzc32bp1q63eRo0pV0/17dvX1qWQFSnfy7/99ptNjv/CCy8IAAkMDKxwFaDyPRkQECBXrlyRd955Rx3GrM1wUVZWlmzYsKHSydn5+fkV/gi73vPPP6/+vPv5+cmDDz4or7zyijz66KNyxx13qNuqumgmJydH/vOf/6h/9E2ZMkW2b99eZQ9genq6Oky2evVqg6u6/fz8KgSx0aNHq8OHPXv2FJ1OJ9nZ2eLn51dlAD979qz4+/sLAHnttdcqbJ83b54AkOjoaPW5CRMmqMecPXv2Dc9ZfaX0Hq5Zs8bWpTg0hrJ6qLJ/VGW+TfPmzeXEiRPyxhtvqEFNeU7k2rICH330kURGRlY7L8Nebd68WQBIWFiYrUshKykrK1N7O2w1V6uoqEgNhg8//LD6vE6nk44dOwoAeeWVV9R6lTBz9913mzyMqdPpZOnSpeLr66vu459//lG3f/755+Ll5SUtWrSQzMzMSvexfft2NQQtX7680t6hxx9/XA2aWVlZBtvOnDmjvq/rH8OGDas0KA4bNkydo6q85/Xr16vBDLh29WyHDh1k7dq1InJt7pi3t7cAkM8++0zGjRun9oRVdaXgF198of5hmZqaarCta9eu6ntWpKWliZOTkzg5OTnsnKq77rpLAMjXX39t61IcGkNZPVTZP2pRUZEEBwdX+OXZvHlzi63pZCtHjhwRAOLr62vrUshKlKvp3NzcbHpJ/7Zt29QrMj/55BPZtWuXLF26VJ3nVH5uZlpamrq+1f/93/8ZfYwDBw5IVFRUhZ/lli1bSmJiojz00EMGz3fp0qXCxTdXrlxRr1ocNWpUlce6evWqusRMTEyM6HQ6KSkpkeTkZGnRooUA15aC2LNnj6xbt04eeugh9cKH66/C/uuvv9Rhw+vnLV28eFF2794t58+fF51OV6GOBQsWqL1pyvtKSkqqsm69Xi8DBgxQe9iU74ljx44JcG2txYsXLxq8ZuPGjTbrZbUHQ4YMEQDywQcf2LoUh8ZQVg9V9Y+6ZMkS9Rdanz595KOPPrL4P7wtXL58WX2fV69etXU5ZAUbN24U4NpFKbb25JNPVtp79Nxzz1Vo++abbwpwbdHO06dP33C/J06ckNGjR6u9Ww0bNpTFixfLvn37KiwL4eTkJDNmzFAnbw8cONAgrD722GPqH2XVXcRz6NAhde5Xy5Yt1dAFXFt+5PqeyW+++Ubd/t5774lOp5NFixZJgwYNBLi25pepioqK1Dl5AOSRRx6p9jWZmZnqlZVTpkyRuXPnqmH27rvvNrmG+u7hhx8W4No6bGQ7DGX1UFX/qHq9Xn777Tc5efKkjSqzDr1er/ZA1Pf3StcoE78HDx5s61LkypUrcs8990jr1q0lJCREmjZtKrfeeqvB8KKirKxMbrvtNgEgsbGxotfrJT8/X+bNmye33Xab3HXXXTJs2DB54IEH1AsJAMgDDzxgMCyZk5Mj9957rwCQkJAQdbJ2UlKSOjQ4atQoefrppw3mim3atMmo97R8+XKD0Ofl5SX33XefZGdnV9r+tddeU8OhMlwIQO644w7JycmpwVkV+fXXX9XeMmOvhPzoo48qDchffvlljWqoz5566ikBIM8++6ytS3FoDGX1kLX+Ue2ZMl9u+/btti6FrED5QPnf//5n61JMduTIETU4jRkzRgIDAysNEkpwq+puGTqdThITEyv83K9cubLSfc2aNcvoGvV6vWzcuFHWrVsnp06dqnSI8fr248ePV4/l7e0tS5curfZ11Vm3bp0cPHjQpLonTZok3bp1k7Fjx8rbb78tW7dutZulSOzJnDlzBLh2dTDZjrU+v11AZEVBQUE4deoUsrKybF0KWYElb0RuaeHh4XjllVcwY8YMfPHFFwCA1q1bY8aMGfD29salS5eg1WrRt29f9OrVq8r9ODk5oXfv3hWeHz58OHJycrBq1Sp07NgR3bp1Q48ePdChQweja9RoNIiJiTGp/dKlS+Hs7IyCggLMmzcPISEhRr++Kvfcc49J7ZU6qHo+Pj4AgLy8PBtXQtbAUEZWFRQUBAA4f/68jSsha/j7778B1M1QBgDTpk3Dli1bcOjQIUyfPh2PPPII3NzczLb/SZMmYdKkSWbbnzFcXV3x4YcfWvWYVHO+vr4AAK1Wa+NKyBoYysiqmjZtCgDsKXMApaWlSE9PB1B3Q5mzszN++eUXW5dBDoyhzLE42boAcixKT5kjhTKtVgsRsXUZVnfq1CnodDp4enoiODjY1uUQ1UkMZY6FoYysytFCWWJiIho1aoQRI0ZAr9ebff/5+fkW2a+IoLCwsFZhUplP1rZtWzg58VcNUU0wlDkW/qYkq1KGLx1lTtnLL78MnU6H7777Dq+//rpZ971p0yY0bdoUYWFh2Lp1q8G2xMREzJkzB+fOnTN6f3v37kXHjh3RoEEDODk5oUGDBoiIiKjRBOPjx4/j66+/BgC0b9/e5NcT0TUMZY6FoYysypF6yvbu3YtNmzZBo9EAAObMmYO1a9ca9dqTJ08iIyOjyu1JSUkYPHgw8vPzcfz4cfTp0wfPPPMM/vzzT0RHR+OOO+7AK6+8gt69e99wP4p//vkHQ4YMwaFDh1BYWKg+f/DgQUycONHoHrMffvgBPXr0QLt27bBixQoAQNeuXY16LRFVVP7qS0ecBmEvrHbuLbrgBhngOmUiGRkZAkBcXV1rvTaSrRUXF99wXaWRI0cKABk5cqR6r0JfX1/5+++/q3zNvn37ZODAgeo6UnfddZesWLFCCgsLDdqUv7fiI488UmGtK1dXV3XV+JYtW6qru1+9elV+/fVX2bhxo3r+y8rKJCYmRgBI27Zt5ejRo5KVlSWbN29WF0ZdunRptefj3XffVY/v7OwsMTEx8sknn0hJSYmRZ5SIrpefn6/+XF1/Wy6yjqysLOnfvz8XjxURCQ0NrXSBxf/+978iIlJYWCj//e9/JSAgQLy8vOT++++vcIPe06dPy7333iuenp5y0003yf/+978KN/ndvHmzdO3aVdzc3KRNmzby6aefVqjlvffek9DQUHF3d5eePXtKcnKySe+FoexakFH+Da+/x509uHjxotx9992V3nqnvISEBGnYsKG0bNlSZs+eXeE+padOnRJnZ2cBIHv37pXi4mK5/fbbBYC0adNGtm3bZtA+NTVVHnjgAYPb8Sj3agSu3TuyVatW0qtXL2nUqJEAkF69ekl+fr6IiKxdu1aCg4PF2dlZHn30UUlPT5eMjAz1FjgtWrSQ+Ph4adiwobrP7t27S0JCgrz44osCQDw9PSvc+1C53ZC7u7vs3bu30nOh1+vVBS7x/2+dY+zK7kR0Y3q9Xv1dcubMGVuXY1e2bNkiEydOlK1bt1rsGD/88IM0btxY/f3m8KHswoULcv78efWRkJAgAGTz5s0iIjJp0iQJCQmRTZs2ye7du+W2226T22+/XX19WVmZdOzYUaKjo2Xfvn2ybt06ady4scGq2SdPnpQGDRrItGnT5PDhw7JkyRJxdnaWDRs2qG2+/fZbcXNzk08++UQOHTokEyZMED8/vypvZ1IZhrJrlFBx4MABW5diQKfTyT333KP+8O3Zs6fSdtu2bVPvF1j+cdddd0lKSoqIiDz99NMCQPr166e+7ty5cxISEqK2nzRpkuzevVtGjhypBjCNRiPx8fFy9OhROX36tMydO1e9wXT5R7du3SQ3N9egrqtXr1YIumfOnJH27dsbvDYkJES8vb2NusWNXq9Xe+7atm0reXl5FbYrq/YDkFdffZWrshOZWUBAgACQQ4cO2boUu3Do0CEZNGiQ+nvHxcVFli1bVmX7devWSZcuXeStt94yuNfs9fLz8+X777+XpUuXymuvvSZDhw5Vj9GhQweGsso89dRT0qZNG9Hr9ZKbmyuurq6yatUqdfuRI0cEgCQlJYnItX8MJycng96zpUuXio+PjxQXF4uIyIwZM6RDhw4Gx3nwwQclNjZW/bpnz54yefJk9WudTifBwcEm3SSWoeyaLl26CABZs2aNrUsx8MYbbxiElHvuuadCm71796pDh7GxsfL1119LbGysejNqJycnmTx5stojtX79eoPXX7p0yeA2N+UfQ4cOrfRWNTqdTk6ePClbt26VlStXyhdffGHS99C5c+dk1KhRMm3aNElKShKdTicXLlyQp556Sr2J9Y1u4XLp0iU1GD7//PMG29asWaPW/9577xldExEZr1WrVrw93f+3aNEi9fets7OzdO/eXf0d9Pjjj1eYLnH69Gnx8/NT29x2221y+PDhSvc9ZMiQCr+XnZycZNasWXLhwgWGsusVFxdLo0aN5LXXXhMRkU2bNgkAuXz5skG7Fi1ayNtvvy0iIrNnz5aIiAiD7SdPnlSHlUREevfuLU899ZRBm08++UR8fHzU4zo7O8tPP/1k0GbMmDEyaNCgKustKioSrVarPjIzMxnKROT+++8XALJ48WJbl6LaunWrOkTw3HPPqXOplBtIi4gcPnxYbrrpJnXosKCgQN126tQpGTZsmMEPc8eOHavsNdq8ebPag3XfffdVOTRoaSdPnpTvv/++wnD+9X744QcBrt3wWvkDR+mFBurmvS2J6grlD9nr/8iry3Q6nUyfPl0mTpwoV69eNeo1eXl56h+8cXFxcuTIEdHr9fL666+row133HGHOn2irKxM+vTpIwCkffv26giBu7u7fPDBBwb7/vHHH9Vet7i4OBk/frxMnz5dnabEG5JXYuXKleLs7Cxnz54VEZGvv/5a3NzcKrS79dZbZcaMGSIiMmHCBImJiTHYXlBQIABk3bp1IiLSrl07ef311w3arF27VgDI1atX5ezZs5X+lTJ9+nTp2bNnlfUqc3Wufzh6KHvmmWcEgEydOtXWpUh2drasW7dOmjdvLgBk1KhRotfrZeLEiQJA+vTpI3q9Xnbu3KkOu1Y2dKj47bff1LBVvge3MiUlJZKRkWGJt2V2er1ebr31VgEgTz75pIiIfP755wJA/Pz8JCcnx8YVEtVfSrD49ttvbV2KyU6dOiWvvvpqhXmm77zzjvqZGBcXZzCseObMGXnhhRcqjBwsW7ZMDVjX/8H7yy+/qKErNDRU9u/fL6+99poAkIYNG8qxY8ckIyPDYIqKMndcq9VKs2bN1D/KK8NQVomYmBi577771K/tPZSxp6xy77//vgCQwYMHW2T/ly5dkuzsbDl//rxkZGRIYmKifPTRRzJz5kwZO3asDBw4UHr16qUGMeURFhamXt2UmZkp7u7uAkBmz56t/nXWo0ePai9QKCkpkczMTIu8N1v6/fffBbh20UFaWpp6Ec4bb7xh69KI6jVlXueHH35o61JMdu+996pzspRgtn//fnFzc1Pn0SpDj3q9XjZu3KhOrG/VqpUUFRWJyLU/DCMiIgSAOhJ2vUOHDkmbNm0EgDRo0EAd8Sh/4Z5er5f//e9/6vDnmjVrZMqUKeq82ap67RjKrnPq1ClxcnKS1atXq8/Z+/Dl9Tin7Jp169YJAOnUqZPZ9630cBn70Gg0EhYWJqNHj5YTJ04Y7Gvq1KkGbfv161dhoruj6devnwCQ4OBg9b/lh3GJyPweeughASALFy60dSkmSU9PN7iKPCIiQs6ePatOmh84cKCsWrVKbRMdHW3Qvvx73rFjhzr0eOnSpSqPeenSJYmOjlZfP3z48Aq9ajqdTsaMGSMAxMPDQz3m77//XuV+Gcqu8+KLL0pQUJDB3Bdlov/333+vPnf06FEBKk70L3+V5Icffig+Pj5qAp8xY4Z07NjR4Hjx8fEVJvpPmTJF/Vqn00mzZs040b8GlH+jhg0bmvVKvfXr11c6SbNly5YSExMjU6ZMkTfeeEOWL18uq1atki1bttwwZGVnZ4uXl5c6CV/5fnFkycnJBud3+fLlti6JqN6bPHmyAJAXXnjB1qWYZNasWeqUj8DAQPX3PgAJDAxUe86WLFli8Htl0qRJsnTpUgGure148eJFefjhhwWAjBkzptrjlpaWyosvvigjRoyocmpFSUmJwVDm6NGjb7hPhrJydDqdtGjRQmbOnFlh26RJk6RFixbyxx9/yO7duyUqKkqioqLU7cpk5JiYGElJSZENGzbITTfdVOmSGNOnT5cjR47I+++/X+mSGO7u7vLZZ5/J4cOHZeLEieLn51dhTbQbYSi7prCwUP3LxFzrWV25ckW9QtCcc9V27Nghn3766Q0vo3Y0yhVKYWFh1V4gQES199xzzwkAeeKJJ2xWg16vl5KSEqN/FxYXF6sLWP/www+SmppqsN7X9RctvP7669KuXTtZsWKFiFz73FcucHjooYfEw8Oj0mlEtZGfny+DBg2Sbt26VftZxFBWzsaNGwWApKWlVdimLB7r7+8vDRo0kCFDhsj58+cN2pw6dUruuece8fT0lMaNG8szzzxT6eKxXbp0ETc3N2ndunWli8cuWbJEWrRoIW5ubtKzZ0/ZsWOHSe+DoexfyqRKU89hVZ588kkBrq1eryyoSpZx5swZefjhh2XXrl22LoXIIcyfP9/oXiJz0mq10q1bN3X+l9JzNWfOHPVip7KyMvnhhx/kvvvuk9dff10d/Vi5cqUAkKZNm6rLVKSkpEhUVJTRw7DKFCXl0blzZ4usg2jMPhnK6iGGsn/17t1bAMg333xT631t375d7XnbuHGjGaojIrIfylCepS6Oqsrs2bOrnI/r5+cnkydPVtdQUx4zZ84UvV4vd955pwCQOXPm1KqG8ovEvv/++2Z6Z6az1uc3b0hONtGqVSsA1268XRuHDx/GmDFjICIYO3YsYmJizFEeEZHd8PX1BQBotVqrHfPChQt4++23AQCffvopsrOzcfnyZaxatQq33HILcnNz8f777yM9PR0BAQGIj48HAMyfPx/jxo3D5s2b4eTkhEcffbRWdSxYsABubm7w9/fHqFGjav2+7J2LrQsgx9S6dWsANQ9ler0e7733HmbOnImioiI0a9ZM/QVCRFSfWCKUHT9+HM7OzuofyNd7/fXXUVBQgO7du2Ps2LHQaDQAgAceeABDhgzBt99+i/Xr16NPnz546KGH0KBBA0RFReHJJ5/E559/DgC47777EBISUqs6w8LCkJKSAldXV/U81GcMZWQTSihLT083+bX5+fkYOnQofvvtNwBA//798cknnyAgIMCsNRIR2QMljOTl5Zllf5cvX0a3bt2g0+mQmJiI7t27G2w/ffo0li5dCgCYN2+eGsgUzs7OGDVqVIWeqyeeeAJlZWWYNm0aAGDSpElmqffmm282y37qAoYysonaDF/Onz8fv/32Gzw9PfHmm2/i8ccfr/BLg4iovjB3T9lvv/2GK1euAAAGDhyI5ORkgx6tl156CSUlJbjzzjsRHR1t0r6ffvppNGnSBGfOnEH//v3NUq8jYSgjm1B6yjIzM1FaWgpXV1ejXpebm4vFixcDAL788ksMHTrUYjUSEdmD8qFMRGr9R+i6desAABqNBufPn8d9992HrVu3wtnZGd999506/Pj666/X6FiOMPfLUjjRn2wiKCgI7u7u0Ol0yMzMNPp17733HvLy8tChQwcMGTLEghUSEdkHHx8fAEBpaSmKiopqtS+9Xo/169cDAD755BMEBgbiwIEDuO222xAUFIRx48ZBr9djyJAhuO2222pdO5mGoYxswsnJyeQhzPz8fLzzzjsAgOeffx5OTvz2JaL6z9vbW+2xqu0Q5p49e3Dx4kV4e3tj5MiR+OWXX+Dp6YnDhw/jypUraNWqFebOnYsvvvjCHKWTiTh8STbTunVrHD161OjJ/kuXLkVOTg7atWuH4cOHW7g6IiL74OTkBG9vb+Tl5UGr1SIoKKjG+1KGLu+++264ubmhZ8+eWLduHX755RcMHjwYvXv35h+8NsRQRjZjSk9ZYWEh3nzzTQDAc889B2dnZ4vWRkRkT5o3b47Dhw/j5MmTCAsLq/F+lFB27733qs/17dsXffv2rW2JZAaMw2Qzxq5VptfrMXfuXFy4cAEtW7bkJFIicjidOnUCABw8eLDG+7hw4QJ27doFALjnnnvMUheZF0MZ2YzSU3aj4cvMzEzcfffdWLBgAQBg9uzZRl+pSURUXyih7MCBAzXex8aNGyEi6Nq1K4KDg81VGpkRQxnZTHU9ZT/88AM6d+6MP/74Aw0aNMCHH36IcePGWbNEIiK70LlzZwC16ymrbOiS7AvnlJHNKD1lly5dQl5ennrZNwB89dVX6j0te/bsia+++grt2rWzValERDal9JQdOXLEpLUdFWVlZdi4cSMAhjJ7xp4yshkfHx80atQIgOEQ5vfff4+xY8dCRDBx4kRs3bqVgYyIHFpoaCi8vb1RWlqKtLQ0o16TlJSEoUOH4o477kDnzp1x+fJlBAQEIDIy0sLVUk2xp4xsqnXr1rh06RKOHj2Kli1bYtOmTYiPj4der8e4ceOwdOlSXp5NRA5Po9GgY8eOSEpKwsGDB9GxY8cbtlf+qE1NTTV4ftiwYbx63Y4xlJFNtWrVCrt27cKIESMMno+Pj8f//d//MZAREf1/nTt3VkNZfHz8Ddtu3boVqampaNCgAT7++GM0atQIjRo1QkREhJWqpZpgKCObGjBgAFatWgURAXDtr8GHH34Yy5cv519zRETlmHIF5gcffADg2n0or/+jl+yXRpRPQ7K4vLw8+Pr6QqvVGkxqd3RXrlyBXq+Hh4cH3Nzcan2zXSKi+igxMRF33HEHWrRogdOnT1fZLjs7GyEhISgtLcXevXvRtWtXK1ZZP1nr85s9ZWRz3t7eti6BiMjuKT1lGRkZ0Gq18PX1rbTdxx9/jNLSUtx2220MZHUMJ+wQERHVAf7+/mjevDmAqtcr0+l0WLZsGQDgv//9r9VqI/NgKCMiIqojqrvd0tq1a5GZmYlGjRph2LBh1iyNzIChjIiIqI6obmV/ZYL/I488Ag8PD6vVRebBUEZERFRH3OgKzH379mHjxo3QaDR47LHHrF0amQFDGRERUR2hhLLU1FRcv3jC3LlzAQAjRoxAmzZtrF0amQFDGRERUR0RHh4OFxcXaLVaZGZmqs/v2bMHv/zyC5ycnDBnzhwbVki1wVBGRERUR7i5uSE8PByA4RCm0ksWHx+vbqe6h+uUERER1SERERFITU3FtGnT0LhxYzg7O2PNmjXsJasHGMqIiIjqkFmzZuHPP//EsWPH8J///ActWrQAcO2WSu3bt7dxdVQbHL4kIiKqQzp06ICDBw9i1KhR0Ov1OHXqFJydnTF79mxbl0a1xFBGRERUx/j7++Orr77Cd999h5tvvhlz5sxBu3btbF0W1RJvSG5FvCE5ERFR3WOtz2/2lBERERHZAYYyIiIiIjvAUEZERERkBxjKiIiIiOwAQxkRERGRHWAoIyIiIrIDDGVEREREdsDuQ9nZs2fx0EMPoVGjRvD09ESnTp2we/dudbuIYM6cOWjatCk8PT0RHR2NY8eOGewjJycHo0aNgo+PD/z8/DB+/Hjk5+cbtDlw4AB69+4NDw8PhISEYMGCBRVqWbVqFcLDw+Hh4YFOnTph3bp1lnnTRERE5HDsOpRdvnwZ//nPf+Dq6or169fj8OHDeOutt+Dv76+2WbBgARYvXoxly5YhOTkZXl5eiI2NRVFRkdpm1KhROHToEBISErBmzRokJiZi4sSJ6va8vDzExMQgNDQUe/bswcKFCzF37lwsX75cbbN9+3bEx8dj/Pjx2LdvH+Li4hAXF4fU1FTrnAwiIiKq1+x6Rf9nn30W27Ztw5YtWyrdLiIIDg7GM888g//9738AAK1Wi8DAQHz22WcYMWIEjhw5gltuuQW7du1Cjx49AAAbNmzAvffeizNnziA4OBhLly7F888/j6ysLLi5uanHXr16NY4ePQoAePDBB1FQUIA1a9aox7/tttvQpUsXLFu2rNL6iouLUVxcrH6dl5eHkJAQruhPRERUh3BFfwC//PILevTogWHDhqFJkybo2rUr/u///k/dnp6ejqysLERHR6vP+fr6IjIyEklJSQCApKQk+Pn5qYEMAKKjo+Hk5ITk5GS1TZ8+fdRABgCxsbFIS0vD5cuX1Tblj6O0UY5TmXnz5sHX11d9hISE1OJsEBERUX1m16Hs5MmTWLp0Kdq1a4eNGzfi8ccfx5NPPonPP/8cAJCVlQUACAwMNHhdYGCgui0rKwtNmjQx2O7i4oKAgACDNpXto/wxqmqjbK/MrFmzoNVq1UdmZqZJ75+IiIgch4utC7gRvV6PHj164PXXXwcAdO3aFampqVi2bBnGjh1r4+qq5+7uDnd3d1uXQURERHWAXfeUNW3aFLfccovBczfffDMyMjIAAEFBQQCA7OxsgzbZ2dnqtqCgIFy4cMFge1lZGXJycgzaVLaP8seoqo2ynYiIiKg27Lqn7D//+Q/S0tIMnvv7778RGhoKAGjVqhWCgoKwadMmdOnSBcC1yXjJycl4/PHHAQBRUVHIzc3Fnj170L17dwDAH3/8Ab1ej8jISLXN888/j9LSUri6ugIAEhISEBYWpl7pGRUVhU2bNmHq1KlqLQkJCYiKijL6/SjXVOTl5Zl4JoiIiMhWlM9ti18bKXZs586d4uLiIq+99pocO3ZMvv76a2nQoIF89dVXaps33nhD/Pz85Oeff5YDBw7I4MGDpVWrVlJYWKi26d+/v3Tt2lWSk5Nl69at0q5dO4mPj1e35+bmSmBgoIwePVpSU1Pl22+/lQYNGsiHH36ottm2bZu4uLjIm2++KUeOHJEXX3xRXF1d5eDBg0a/nxMnTggAPvjggw8++OCjDj5OnDhRy2RzY3a9JAYArFmzBrNmzcKxY8fQqlUrTJs2DRMmTFC3iwhefPFFLF++HLm5uejVqxc++OADtG/fXm2Tk5ODKVOm4Ndff4WTkxOGDh2KxYsXo2HDhmqbAwcOYPLkydi1axcaN26MJ554AjNnzjSoZdWqVXjhhRdw6tQptGvXDgsWLMC9995r9HvJzc2Fv78/MjIy4OvrW4uzQsryIpmZmVxepBZ4Hs2H59J8eC7Ng+fRfLRaLVq0aIHLly/Dz8/PYsex+1BWn1hrnRNHwHNpHjyP5sNzaT48l+bB82g+XKeMiIiIyIEwlBERERHZAYYyK3J3d8eLL77ItcvMgOfSPHgezYfn0nx4Ls2D59F8rHUuOaeMiIiIyA6wp4yIiIjIDjCUEREREdkBhjIiIiIiO8BQRkRERGQHGMpqaN68ebj11lvh7e2NJk2aIC4ursJ9Ovv27QuNRmPwmDRp0g33++OPPyImJgaNGjWCRqNBSkqKBd+F7VniPJaWlmLmzJno1KkTvLy8EBwcjDFjxuDcuXOWfjs2Zanvyblz5yI8PBxeXl7w9/dHdHQ0kpOTLflWbM5S57K8SZMmQaPR4N133zVz9fbDUufx4YcfrvCa/v37W/Kt2JwlvyePHDmCQYMGwdfXF15eXrj11luRkZFhqbdic5Y6l9e3Vx4LFy40ujaGshr666+/MHnyZOzYsQMJCQkoLS1FTEwMCgoKDNpNmDAB58+fVx8LFiy44X4LCgrQq1cvzJ8/35Ll2w1LnMerV69i7969mD17Nvbu3Ysff/wRaWlpGDRokKXfjk1Z6nuyffv2eO+993Dw4EFs3boVLVu2RExMDC5evGjJt2NTljqXip9++gk7duxAcHCwJcq3G5Y8j/379zd4zTfffGOpt2EXLHUuT5w4gV69eiE8PBx//vknDhw4gNmzZ8PDw8OSb8emLHUuy7c9f/48PvnkE2g0GgwdOtT44ix6Z00HcuHCBQEgf/31l/rcHXfcIU899VSN9peeni4AZN++feYpsI4w93lU7Ny5UwDI6dOna1lh3WGpc6nVagWA/P7777WssO4w57k8c+aMNGvWTFJTUyU0NFTeeecd8xVq58x1HseOHSuDBw82b3F1jLnO5YMPPigPPfSQmaurWyz1u3Lw4MFy1113mfQa9pSZiVarBQAEBAQYPP/111+jcePG6NixI2bNmoWrV6/aorw6w1LnUavVQqPRWPRGsvbGEueypKQEy5cvh6+vLyIiIsxarz0z17nU6/UYPXo0pk+fjg4dOlisXntlzu/JP//8E02aNEFYWBgef/xxXLp0ySI12ytznEu9Xo+1a9eiffv2iI2NRZMmTRAZGYnVq1dbsnS7Y4nfldnZ2Vi7di3Gjx9vWjG1ioEkIiI6nU4GDBgg//nPfwye//DDD2XDhg1y4MAB+eqrr6RZs2YyZMgQo/bpiD1lljiPIiKFhYXSrVs3GTlypLlLtlvmPpe//vqreHl5iUajkeDgYNm5c6elSrc75jyXr7/+utx9992i1+tFRByqp8yc5/Gbb76Rn3/+WQ4cOCA//fST3HzzzXLrrbdKWVmZJd+C3TDXuTx//rwAkAYNGsjbb78t+/btk3nz5olGo5E///zT0m/DLljqc2f+/Pni7+8vhYWFJtXDUGYGkyZNktDQUMnMzLxhu02bNgkAOX78eLX7dMRQZonzWFJSIgMHDpSuXbuKVqs1V6l2z9znMj8/X44dOyZJSUnyyCOPSMuWLSU7O9ucJdstc53L3bt3S2BgoJw9e1Z9zpFCmSV+vhUnTpxwqCF1c53Ls2fPCgCJj483eH7gwIEyYsQIs9Vrzyz1fRkWFiZTpkwxuR6GslqaPHmyNG/eXE6ePFlt2/z8fAEgGzZsqLato4UyS5zHkpISiYuLk86dO8s///xjrlLtnqW+J8tr27atvP766zUtsc4w57l85513RKPRiLOzs/oAIE5OThIaGmrmyu2LNb4nGzduLMuWLatpiXWGOc9lcXGxuLi4yCuvvGLw/IwZM+T22283S732zFLfl4mJiQJAUlJSTK7JxbTBTlKICJ544gn89NNP+PPPP9GqVatqX6Msb9G0aVMLV1d3WOo8lpaWYvjw4Th27Bg2b96MRo0amatku2XN70m9Xo/i4uKalFknWOJcjh49GtHR0QbPxcbGYvTo0Rg3blyta7ZH1vqePHPmDC5dulSvf7da4ly6ubnh1ltvrbAcxN9//43Q0NBa12yvLP19+fHHH6N79+41m3drcowjERF5/PHHxdfXV/788085f/68+rh69aqIiBw/flxefvll2b17t6Snp8vPP/8srVu3lj59+hjsJywsTH788Uf160uXLsm+fftk7dq1AkC+/fZb2bdvn5w/f96q789aLHEeS0pKZNCgQdK8eXNJSUkx2G9xcbHV36O1WOJc5ufny6xZsyQpKUlOnTolu3fvlnHjxom7u7ukpqZa/T1ai6V+vq9X34cvLXEer1y5Iv/73/8kKSlJ0tPT5ffff5du3bpJu3btpKioyOrv0Vos9T35448/iqurqyxfvlyOHTsmS5YsEWdnZ9myZYtV3581WfLnW6vVSoMGDWTp0qU1qo2hrIYAVPr49NNPRUQkIyND+vTpIwEBAeLu7i5t27aV6dOnV5jXVP41IiKffvpppft98cUXrffmrMgS51EZ+q3ssXnzZuu+QSuyxLksLCyUIUOGSHBwsLi5uUnTpk1l0KBB9X6iv6V+vq9X30OZJc7j1atXJSYmRm666SZxdXWV0NBQmTBhgmRlZVn53VmXJb8nP/74Y2nbtq14eHhIRESErF692krvyjYseS4//PBD8fT0lNzc3BrVpvn/OyYiIiIiG+I6ZURERER2gKGMiIiIyA4wlBERERHZAYYyIiIiIjvAUEZERERkBxjKiIiIiOwAQxkRERGRHWAoIyIiIrIDDGVEREREdoChjIiIiMgOMJQRkUO7+eab8dFHH92wzaVLl9CkSROcOnWq2v29+uqruO2228xUHTBixAi89dZbZtsfEdkvhjIicliFhYU4duwYIiIibtjutddew+DBg9GyZctq97l//3506dLFPAUCeOGFF/Daa69Bq9WabZ9EZJ8YyojIYaWmpkJE0LFjxyrbXL16FR9//DHGjx9v1D7NHco6duyINm3a4KuvvjLbPonIPjGUEZHDSUlJwV133YVevXpBr9ejRYsWePfddyttu27dOri7u1c6JLlnzx706dMHnp6e6Nq1K5KTk3HixAmDUJaRkYGRI0fC398fAQEBGDVqFC5fvqxuT05ORq9eveDp6YkuXbogMTERGo0GqampapuBAwfi22+/Ndv7JyL7xFBGRA7lxIkTuOOOO3DXXXdh0KBBuP/++/HMM8/g6aefRkpKSoX2W7ZsQffu3Ss8f/ToUdx555244447kJqaihdeeAFxcXEAgM6dOwMAjh8/ju7du6Nt27bYsWMHEhIScPz4cUyfPh3AtZ66fv36oW/fvti3bx9mz56NYcOGwd3dHeHh4eqxevbsiZ07d6K4uNj8J4SI7IZGRMTWRRARWcvdd9+N5s2b49NPP0VkZCQefPBBTJ06Ff7+/nj11VfxxBNPGLSPi4tDo0aN8PHHHxs8369fPzRr1gxffPGF+tywYcNw8OBBHD16FAAQExODqKgovPTSS2qbH374AdOnT8fJkydx1113ISgoCCtWrFC3Dxo0CGfOnMHevXvV5w4cOICIiAicOnUKoaGhZj0fRGQ/XGxdABGRtWRlZeGPP/7A9u3bodPpcPDgQcybNw9OTk5wdnaGm5tbhdcUFhbCw8PD4LnTp0/jjz/+MAhOAODq6qoOXZ4+fRoJCQnYunWrwdWTOp0OISEhOH36NDZv3mwwTAkA7u7uFS488PT0BHBtfhsR1V8MZUTkMHbs2AG9Xo8uXbogLS0NhYWF6NKlC06dOoXLly/j9ttvr/Caxo0bG8wBA67NSXNxcUGnTp0Mnt+3bx/Gjh0L4NqE/4CAACQnJ1fYp6enJ3bv3g03Nzd06NDBYNuRI0fw6KOPGjyXk5MDALjppptMf9NEVGcwlBGRwygpKQEAFBUVYd++fQgNDUVAQAAWLFiAjh07VghZANC1a9cKVz46OTlBr9ejpKQELi7Xfo2uW7cOR48eVXvKXF1dceXKFQQHB6NBgwYV9rtv3z6UlZWhqKhI7YnbtGkTDh06VKGnLDU1Fc2bN0fjxo1rfQ6IyH5xoj8ROYyoqCi4uLjg5ZdfRmJiIlq3bo333nsPS5YswWeffVbpa2JjY3Ho0CGD3rLu3bvD1dVVnRv2yy+/YMKECQCghrLIyEj4+PhgzJgx2L9/P44fP44NGzZg6tSple7j119/xcSJEwGgQijbsmULYmJizHsyiMj+CBGRA/niiy+kadOmAkBcXFwkMjJSEhMTb/ianj17yrJlywye+/LLL6V58+bi4eEhffr0kWeffVYCAwMN2iQnJ0vfvn3Fx8dHvL29pVu3brJo0SJ1+9dffy0hISHi5eUlQ4YMkZdeeknatm1rsI/CwkLx9fWVpKSkWr5zIrJ3vPqSiBxSQEAAPvvsMwwaNKjatmvXrsX06dORmpoKJyfLDDDo9Xr07dsXvXr1wuuvv64+v3TpUvz000/47bffLHJcIrIfnFNGRA7nzJkzuHz58g1X8i9vwIABOHbsGM6ePYuQkBCz1JCYmIiLFy+ia9eu+Oeff7Bw4UKcPn0aq1evNmjn6uqKJUuWmOWYRGTfGMqIyOEcPHgQXl5eaNWqldGvUeaCmUt2djaeffZZnD17FoGBgYiOjsbOnTsREBBg0O76KzGJqP7i8CURERGRHeDVl0RERER2gKGMiIiIyA4wlBERERHZAYYyIiIiIjvAUEZERERkBxjKiIiIiOwAQxkRERGRHWAoIyIiIrIDDGVEREREdoChjIiIiMgO/D/T69MExuBDNgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp.plot()" ] }, { "cell_type": "markdown", "id": "50674d2a", "metadata": {}, "source": [ "#### 1.1.2 Selecting the MD peaks" ] }, { "cell_type": "markdown", "id": "b1f08b26", "metadata": {}, "source": [ "Now, we proceed to find the multiple-diffraction (MD) peaks. You can inform the minimum height to be considered (provide a percentage of the maximum intensity). \n", "\n", "For this dataset, 60% is a good choice. Feel free to test other values." ] }, { "cell_type": "code", "execution_count": 30, "id": "58434913", "metadata": {}, "outputs": [], "source": [ "exp.peak_finder(0.6) " ] }, { "cell_type": "markdown", "id": "62c1bc60", "metadata": {}, "source": [ "Visualize the scan again to check the selected peaks. You can access the peak positions by using the `phi` and `peaks` attributes." ] }, { "cell_type": "code", "execution_count": 15, "id": "7d224c78", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAG0CAYAAABzBVAwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABy50lEQVR4nO3deVxU1f8/8NewI7JqiijiDuaCWxJ91EwJLVMx00RSM3Ppo5XZR81Ks6xMbVMzzW/7YpotVq6RWbggrqi4kAsqLqCJDILs8/79we/eGAGZgdlgXs/HYx41956599zrMPOac849VyMiAiIiIiKyKgdrV4CIiIiIGMqIiIiIbAJDGREREZENYCgjIiIisgEMZUREREQ2gKGMiIiIyAYwlBERERHZACdrV8Ce6HQ6XLp0CZ6entBoNNauDhERERlARHDjxg0EBATAwcF87VkMZRZ06dIlBAYGWrsaREREVAWpqalo0qSJ2bbPUGZBnp6eAEr+Ub28vKxcGyIiIjJEVlYWAgMD1e9xc2EosyCly9LLy4uhjIiIqIYx99AjDvQnIiIisgEMZUREREQ2gKGMiIiIyAYwlBERERHZAIYyIiIiIhvAUEZERERkAxjKiIiIiGwAQxkRERGRDWAoIyIiIrIBDGVERERENoChjIiIyIL27QP69Cn5L1FpDGVEREQW9OWXwLZtwFdfWbsmZGt4Q3IiIiIzO3cO+OcfQKMBVq8WABqsXg2MGQOIAPXrA0FB1q4lWRtDGRERkZk1a1b6WUkou3oV6Nq11FKxbJ3I9rD7koiIyMy+/hpwUptBSr56lRDm5FSynogtZURERGYWEwO0bavfMqZISAC6dLF8ncj2sKWMiIjIoooBABoN+ytJH0MZERGRBTRoALi5ZQLYD2Ai2rXLg79/yXIigKGMiIjIIpo0Adq3fwhAGICVWLHiIM6eLVlOBDCUERERWcyZM8fV/8/K0sLV1YqVIZvDUEZERGQB169fR0ZGhvpcq9VasTZki6wayuLi4jBw4EAEBARAo9Fg3bp1euvnzp2LkJAQeHh4wNfXFxEREUhISNArk5GRgZiYGHh5ecHHxwfjxo1Ddna2XpnDhw+jZ8+ecHNzQ2BgIBYuXFimLmvXrkVISAjc3NzQoUMHbNy4UW+9iGDOnDlo1KgR3N3dERERgZMnT5rmRBARUa13+vRpveeZmZnWqQjZLKuGspycHISGhmLZsmXlrm/Tpg0++OADHDlyBDt27ECzZs0QGRmJq1evqmViYmJw9OhRxMbGYv369YiLi8OECRPU9VlZWYiMjERQUBD279+PRYsWYe7cuVi5cqVaZteuXYiOjsa4ceNw8OBBREVFISoqCklJSWqZhQsXYsmSJVixYgUSEhLg4eGBfv36IS8vzwxnhoiIaptTp07pPWdLGZUhNgKA/PTTT7cto9VqBYD8/vvvIiJy7NgxASB79+5Vy2zatEk0Go1cvHhRREQ+/PBD8fX1lfz8fLXMzJkzJTg4WH0+fPhwGTBggN6+wsLCZOLEiSIiotPpxN/fXxYtWqSuz8zMFFdXV/n2228NPkal/lqt1uDXEBFR7TBv3jxByXT+AkBmzZpl7SqRgSz1/V1jxpQVFBRg5cqV8Pb2RmhoKAAgPj4ePj4+6Natm1ouIiICDg4OajdnfHw8evXqBRcXF7VMv379kJycjOvXr6tlIiIi9PbXr18/xMfHAwBSUlKQlpamV8bb2xthYWFqmfLk5+cjKytL70FERPZJ6b5Uvo/YUka3svlQtn79etStWxdubm547733EBsbi/r16wMA0tLS0OCWCV6cnJzg5+eHtLQ0tUzDhg31yijPKytTen3p15VXpjzz58+Ht7e3+ggMDDTq2ImIqPZQui87duwIgGPKqCybD2X33XcfEhMTsWvXLvTv3x/Dhw/HlStXrF0tg8yaNQtarVZ9pKamWrtKRERkJUooU3p32FJGt7L5UObh4YFWrVrh7rvvxieffAInJyd88sknAAB/f/8yAa2oqAgZGRnw9/dXy6Snp+uVUZ5XVqb0+tKvK69MeVxdXeHl5aX3ICIi+5OTk6P2rHT9/zfAZCijW9l8KLuVTqdDfn4+ACA8PByZmZnYv3+/uv6PP/6ATqdDWFiYWiYuLg6FhYVqmdjYWAQHB8PX11cts3XrVr39xMbGIjw8HADQvHlz+Pv765XJyspCQkKCWoaIiKgiyngyPz8/BAUFAWD3JZVl1VCWnZ2NxMREJCYmAigZUJ+YmIjz588jJycHL774Inbv3o1z585h//79eOKJJ3Dx4kUMGzYMANC2bVv0798f48ePx549e7Bz505MmTIFI0aMQEBAAABg5MiRcHFxwbhx43D06FGsWbMGixcvxrRp09R6PPvss9i8eTPeeecdnDhxAnPnzsW+ffswZcoUAIBGo8HUqVPx+uuv45dffsGRI0cwevRoBAQEICoqyqLnjIiIah6l67JVq1bw9vYGwJYyKodZr+2sxLZt2/QuD1YeY8aMkdzcXBkyZIgEBASIi4uLNGrUSAYNGiR79uzR28a1a9ckOjpa6tatK15eXjJ27Fi5ceOGXplDhw5Jjx49xNXVVRo3bixvvfVWmbp899130qZNG3FxcZF27drJhg0b9NbrdDqZPXu2NGzYUFxdXaVv376SnJxs1PFySgwiIvu0cOFCASAjR46U5ORkASBeXl7WrhYZyFLf3xoREaslQjuTlZUFb29vaLVaji8jIrIjEydOxMqVKzF79mxMnjwZ/v7+0Gg0KCoqgoNDjRtJZHcs9f3NdwIREZGZldd9KSKcv5L0MJQRERGZmTLQv1WrVnBzc4OrqysAjisjfQxlREREZpSfn4/z588DAFq2bAkAHOxP5WIoIyIiMqOUlBSICOrWravehYahjMrDUEZERGRGpbsuNRoNgH9DGecqo9IYyoiIiMzozJkzAIAWLVqoy3x8fACwpYz0MZQRERGZ0Y0bNwD8G8QAdl9S+RjKiIiIzCg3NxcA4O7uri5j9yWVh6GMiIjIjMoLZey+pPIwlBEREZnR7VrKGMqoNIYyIiIiM2IoI0MxlBEREZkRx5SRoRjKiIiIzIhjyshQDGVERERmxO5LMhRDGRERkRmx+5IMxVBGRERkRuy+JEMxlBEREZnR7VrKbt68icLCQqvUi2wPQxkREZEZlRfKvLy81P/PysqyeJ3INjGUERERmVF5oczZ2Rl16tQBwHFl9C+GMiIiIjMqL5QBHFdGZTGUERERmVFFoYzTYtCtGMqIiIjMRKfTIT8/HwDg5uamt46hjG7FUEZERGQmSiADKu6+5JgyUjCUERERmYnSdQmw+5Iqx1BGRERkJkooc3R0hLOzs946hjK6FUMZERGRmVQ0yB/grZaoLIYyIiIiM7ldKOOUGHQrhjIiIiIzMaSljKGMFAxlREREZsJQRsZgKCMiIjITQ7ovOaaMFAxlREREZsKWMjIGQxkREZGZMJSRMRjKiIiIzIRTYpAxGMqIiIjMxJAxZQUFBcjLy7NktchGMZQRERGZye1CmaenJzQaDQB2YVIJhjIiIiIzuV0oc3BwgKenJwCGMirBUEZERGQmtwtlAMeVkT6GMiIiIjOpLJR5eXkBAG7cuGGxOpHtsmooi4uLw8CBAxEQEACNRoN169ap6woLCzFz5kx06NABHh4eCAgIwOjRo3Hp0iW9bWRkZCAmJgZeXl7w8fHBuHHjkJ2drVfm8OHD6NmzJ9zc3BAYGIiFCxeWqcvatWsREhICNzc3dOjQARs3btRbLyKYM2cOGjVqBHd3d0RERODkyZOmOxlERFTrVBbK3NzcAAD5+fkWqxPZLquGspycHISGhmLZsmVl1t28eRMHDhzA7NmzceDAAfz4449ITk7GoEGD9MrFxMTg6NGjiI2Nxfr16xEXF4cJEyao67OyshAZGYmgoCDs378fixYtwty5c7Fy5Uq1zK5duxAdHY1x48bh4MGDiIqKQlRUFJKSktQyCxcuxJIlS7BixQokJCTAw8MD/fr14xUzRERUIUNDGb9LCAAgNgKA/PTTT7cts2fPHgEg586dExGRY8eOCQDZu3evWmbTpk2i0Wjk4sWLIiLy4Ycfiq+vr+Tn56tlZs6cKcHBwerz4cOHy4ABA/T2FRYWJhMnThQREZ1OJ/7+/rJo0SJ1fWZmpri6usq3335bYX3z8vJEq9Wqj9TUVAEgWq22krNBRES1wSOPPCIAZOnSpeWu79u3rwCQb775xsI1I2NotVqLfH/XqDFlWq0WGo1GndslPj4ePj4+6Natm1omIiICDg4OSEhIUMv06tULLi4uapl+/fohOTkZ169fV8tERETo7atfv36Ij48HAKSkpCAtLU2vjLe3N8LCwtQy5Zk/fz68vb3VR2BgYPVOABER1SiVtZS5uroCYPcllagxoSwvLw8zZ85EdHS0OjAyLS0NDRo00Cvn5OQEPz8/pKWlqWUaNmyoV0Z5XlmZ0utLv668MuWZNWsWtFqt+khNTTXqmImIqGZj9yUZw8naFTBEYWEhhg8fDhHB8uXLrV0dg7m6uqq/goiIyP6wpYyMYfMtZUogO3fuHGJjY9VWMgDw9/fHlStX9MoXFRUhIyMD/v7+apn09HS9MsrzysqUXl/6deWVISIiuhVbysgYNh3KlEB28uRJ/P7776hXr57e+vDwcGRmZmL//v3qsj/++AM6nQ5hYWFqmbi4OBQWFqplYmNjERwcDF9fX7XM1q1b9bYdGxuL8PBwAEDz5s3h7++vVyYrKwsJCQlqGSIiolsxlJExrBrKsrOzkZiYiMTERAAlA+oTExNx/vx5FBYW4pFHHsG+ffvwzTffoLi4GGlpaUhLS0NBQQEAoG3btujfvz/Gjx+PPXv2YOfOnZgyZQpGjBiBgIAAAMDIkSPh4uKCcePG4ejRo1izZg0WL16MadOmqfV49tlnsXnzZrzzzjs4ceIE5s6di3379mHKlCkAAI1Gg6lTp+L111/HL7/8giNHjmD06NEICAhAVFSURc8ZERHVHOy+JKOY9drOSmzbtk0AlHmMGTNGUlJSyl0HQLZt26Zu49q1axIdHS1169YVLy8vGTt2rNy4cUNvP4cOHZIePXqIq6urNG7cWN56660ydfnuu++kTZs24uLiIu3atZMNGzbordfpdDJ79mxp2LChuLq6St++fSU5Odmo47XUJbVERGQb7rjjDgEghw8fLnf9Cy+8IABk6tSpFq4ZGcNS398aERErZEG7lJWVBW9vb2i1Wr2xcUREVDt5enoiOzsbJ0+eRKtWrcqsf/XVVzF37lxMmjSpRl3IZm8s9f1t02PKiIiIajJ2X5IxGMqIiIjMoKioCMXFxQA40J8Mw1BGRERkBkorGcCWMjIMQxkREZEZlA5lFU0kzpYyKo2hjIiIyAyUUObq6goHh/K/bhnKqDSGMiIiIjOobJA/wO5L0sdQRkREZAaGhDK2lFFpDGVERERmwFBGxmIoIyIiMgN2X5KxGMqIiIjMgC1lZCyGMiIiIjNgSxkZi6GMiIjIDNhSRsZiKCMiIjIDhjIyFkMZERGRGRjTfVlYWAidTmeRepHtYigjIiIyA2NaygCOKyOGMiIiIrMwNpSxC5MYyoiIiMzAkFDm5OQEjUYDgC1lxFBGRERkFoaEMo1Gw8H+pGIoIyIiMgNDQhnAucroXwxlREREZmBoKGNLGSkYyoiIiMyAoYyMxVBGRERkBuy+JGMxlBEREZkBW8rIWAxlREREZsBQRsZiKCMiIjIDdl+SsRjKiIiIzIAtZWQshjIiIiIzYEsZGYuhjIiIyAzYUkbGYigjIiIyAyVkMZSRoRjKiIiITExE2H1JRmMoIyIiMrHSAYstZWQohjIiIiITU1rJAIYyMhxDGRERkYkpoczR0RHOzs63LcvuS1IwlBEREZmYEsqUVrDbYUsZKRjKiIiITMzQQf4AW8roXwxlREREJmZMKGNLGSkYyoiIiEyMoYyqwqqhLC4uDgMHDkRAQAA0Gg3WrVunt/7HH39EZGQk6tWrB41Gg8TExDLbyMvLw+TJk1GvXj3UrVsXQ4cORXp6ul6Z8+fPY8CAAahTpw4aNGiA6dOno6ioSK/Mn3/+iS5dusDV1RWtWrXC559/XmZfy5YtQ7NmzeDm5oawsDDs2bOnuqeAiIhqIXZfUlVYNZTl5OQgNDQUy5Ytq3B9jx49sGDBggq38dxzz+HXX3/F2rVr8ddff+HSpUt4+OGH1fXFxcUYMGAACgoKsGvXLnzxxRf4/PPPMWfOHLVMSkoKBgwYgPvuuw+JiYmYOnUqnnzySWzZskUts2bNGkybNg2vvPIKDhw4gNDQUPTr1w9XrlwxwZkgIqLahC1lVCViIwDITz/9VO66lJQUASAHDx7UW56ZmSnOzs6ydu1addnx48cFgMTHx4uIyMaNG8XBwUHS0tLUMsuXLxcvLy/Jz88XEZEZM2ZIu3bt9Lb96KOPSr9+/dTn3bt3l8mTJ6vPi4uLJSAgQObPn1/hMeXl5YlWq1UfqampAkC0Wu3tTwYREdVoq1atEgBy3333VVr2559/FgASFhZmgZpRVWi1Wot8f9foMWX79+9HYWEhIiIi1GUhISFo2rQp4uPjAQDx8fHo0KEDGjZsqJbp168fsrKycPToUbVM6W0oZZRtFBQUYP/+/XplHBwcEBERoZYpz/z58+Ht7a0+AgMDq3/QRERk89h9SVVRo0NZWloaXFxc4OPjo7e8YcOGSEtLU8uUDmTKemXd7cpkZWUhNzcX//zzD4qLi8sto2yjPLNmzYJWq1UfqampVTpOIiKqWdh9SVXhZO0K1Gaurq7qLyAiIrIfDGVUFTW6pczf3x8FBQXIzMzUW56eng5/f3+1zK1XYyrPKyvj5eUFd3d31K9fH46OjuWWUbZBRESkYPclVUWNDmVdu3aFs7Mztm7dqi5LTk7G+fPnER4eDgAIDw/HkSNH9K6SjI2NhZeXF+688061TOltKGWUbbi4uKBr1656ZXQ6HbZu3aqWISIiUrCljKrCqt2X2dnZOHXqlPo8JSUFiYmJ8PPzQ9OmTZGRkYHz58/j0qVLAEoCF1DSsuXv7w9vb2+MGzcO06ZNg5+fH7y8vPD0008jPDwcd999NwAgMjISd955J0aNGoWFCxciLS0NL7/8MiZPnqz+Opk0aRI++OADzJgxA0888QT++OMPfPfdd9iwYYNat2nTpmHMmDHo1q0bunfvjvfffx85OTkYO3aspU4XERHVEGwpoyox67Wdldi2bZsAKPMYM2aMiIh89tln5a5/5ZVX1G3k5ubKf//7X/H19ZU6derIkCFD5PLly3r7OXv2rDzwwAPi7u4u9evXl+eff14KCwvL1KVTp07i4uIiLVq0kM8++6xMfZcuXSpNmzYVFxcX6d69u+zevduo47XUJbVERGRdEydOFAAyd+7cSsteunRJAIiDg4PodDoL1I6MZanvb42IiDXCoD3KysqCt7c3tFotvLy8rF0dIiIykzFjxuDLL7/EggULMGPGjNuWvX79Ovz8/ACUTMHk7OxsiSqSESz1/V2jx5QRERHZoqp0XwLswrR3DGVEREQmVtVQxsH+9o2hjIiIyMSMCWWOjo5qlyVDmX1jKCMiIjKxmzdvAgDq1KljUHlegUkAQxkREZHJZWdnAwA8PT0NKs+5yghgKCMiIjI5JZR5eHgYVJ4tZQQwlBEREZmcEsrq1q1rUHm2lBHAUEZERGRyOTk5ABjKyDgMZURERCZUXFysDvQ3NJSx+5IAhjIiIiKTUgIZwJYyMg5DGRERkQkp48kcHBzUsFUZhjICGMqIiIhMqvQgf41GY9Br2H1JAEMZERGRSRl75SXAljIqwVBGRERkQlUJZWwpI4ChjIiIyKTYUkZVxVBGRERkQgxlVFUMZURERCbE7kuqKoYyIiIiE2JLGVUVQxkREZEJMZRRVTGUERERmZASyjw8PAx+DbsvCWAoIyIiMiljb0YOsKWMSjCUERERmRAH+lNVMZQRERGZEMeUUVUxlBEREZkQQxlVFUMZERGRCbH7kqqKoYyIiMiE2FJGVcVQRkREZEIMZVRVDGVEREQmxO5LqiqGMiIiIhNiSxlVFUMZERGRiYgIW8qoyhjKiIiITCQ/Px/FxcUA2FJGxmMoIyKbsm8f0KdPyX+JahqllQww7t6XDGUEVCGUPfHEE/j888/V5+fOncOmTZug1WpNWS8islNffgls2wZ89ZW1a0JkPCWUubu7w9HR0eDXKd2XBQUFEBGz1I1sn9GhbOPGjQgJCQEAZGZmomvXroiKisKdd96J5ORkk1eQiGq/c+eA/fuBAweANWtKlq1eXfJ8//6S9UQ1gXIzcmNayYB/W8oAjiuzZ07GvkCr1aJx48YAgB9++AH+/v64ePEiZs2ahVmzZuHHH380eSWJqHZr1qz0MwGgwdWrQNeupZay8YBqgKoM8gf0Q1leXp7ec7IfRreUBQYGIiUlBQCwdu1aPP7443B1dcWkSZOwc+dOk1eQiGq/r78GnNSfiBoA/4YwJ6eS9UQ1QVVDmbOzs/r/bCmzX0a3lD3++ON45plnMHDgQGzduhUffPABAECn0+kNcCQiMlRMDNC2rX7LmCIhAejSxfJ1IqqKqoYyjUYDNzc35OXlcbC/HTO6pWzWrFkYNmwY4uLi8NZbb6FVq1YAgL1796Jp06ZGbSsuLg4DBw5EQEAANBoN1q1bp7deRDBnzhw0atQI7u7uiIiIwMmTJ/XKZGRkICYmBl5eXvDx8cG4cePKhMPDhw+jZ8+ecHNzQ2BgIBYuXFimLmvXrkVISAjc3NzQoUMHbNy40ei6EJEplEwnoNGwv5JqnqqGMoBzlVEVQplGo8FLL72Ev/76C88//7y6PC0tDSNHjjRqWzk5OQgNDcWyZcvKXb9w4UIsWbIEK1asQEJCAjw8PNCvXz+9XxExMTE4evQoYmNjsX79esTFxWHChAnq+qysLERGRiIoKAj79+/HokWLMHfuXKxcuVIts2vXLkRHR2PcuHE4ePAgoqKiEBUVhaSkJKPqQkRV5+NTACANwH4AE9GmzQ34+wMNGli5YkRGqE4o47QYBDFSeHi4aLVaY19WKQDy008/qc91Op34+/vLokWL1GWZmZni6uoq3377rYiIHDt2TADI3r171TKbNm0SjUYjFy9eFBGRDz/8UHx9fSU/P18tM3PmTAkODlafDx8+XAYMGKBXn7CwMJk4caLBdTGEVqsVAGY5f0Q13b59+wRwEZSM9Jdlyz6UvDxr14rIOG+//bYAkMcee8zo1wYFBQkASUhIMEPNqDos9f1tdEvZ7t27y03xWVlZmDlzZrUCYmkpKSlIS0tDRESEuszb2xthYWGIj48HAMTHx8PHxwfdunVTy0RERMDBwQEJCQlqmV69esHFxUUt069fPyQnJ+P69etqmdL7Ucoo+zGkLuXJz89HVlaW3oOIylfyN1ugPv/772T8/94cohqD3ZdUHQaHskceeQRvvfUWNBoNrly5UmZ9Tk4O3n77bZNVLC0tDQDQsGFDveUNGzZU16WlpaHBLX0bTk5O8PPz0ytT3jZK76OiMqXXV1aX8syfPx/e3t7qIzAwsJKjJrJfyg8pZcodzntINRG7L6k6DL76smnTpli/fj1EBKGhoahXrx5CQ0MRGhqKTp06ITk5GY0aNTJnXWucWbNmYdq0aerzrKwsBjOiCiih7LHHHsOCBQsYyqhGYiij6jA4lL377rsAABcXF+zcuROXLl3CwYMHkZiYiJ9++gk6na7cqxqryt/fHwCQnp6uF/bS09PRqVMntcytrXZFRUXIyMhQX+/v74/09HS9MsrzysqUXl9ZXcrj6uqqNkcTUcUyMzPVEDZq1CgsWLAAZ8+e5SSaVOOw+5Kqw+gxZTk5OejWrRsGDx6MuXPnYt26dTh9+jRSUlKMvvrydpo3bw5/f39s3bpVXZaVlYWEhASEh4cDAMLDw5GZmYn9+/erZf744w/odDqEhYWpZeLi4lBYWKiWiY2NRXBwMHx9fdUypfejlFH2Y0hdiKjq9u7dC6Dkb+3OO++Et7c3RASnTp2ycs2IjMOWMqoOo0OZs7MzNBqNSXaenZ2NxMREJCYmAigZUJ+YmIjz589Do9Fg6tSpeP311/HLL7/gyJEjGD16NAICAhAVFQUAaNu2Lfr374/x48djz5492LlzJ6ZMmYIRI0YgICAAADBy5Ei4uLhg3LhxOHr0KNasWYPFixfrdSs+++yz2Lx5M9555x2cOHECc+fOxb59+zBlyhQAMKguRFR1StdlWFgYNBoNgoODAQAnTpywZrWIjGaKUMaWMvtl9Iz+e/fuxQsvvICrV6+iVatW6NSpk/owdvLYffv24b777lOfK0FpzJgx+PzzzzFjxgzk5ORgwoQJyMzMRI8ePbB582a97oxvvvkGU6ZMQd++feHg4IChQ4diyZIl6npvb2/89ttvmDx5Mrp27Yr69etjzpw5enOZ3XPPPVi1ahVefvllvPjii2jdujXWrVuH9u3bq2UMqQsRVc2ePXsAQG3hDg4Oxp49eziujGoc5Ybk1em+ZEuZ/TI6lI0aNQpNmzbFhAkTkJKSgr/++guLFy/G9evX4evri2vXrhm8rd69e0Nuc5dhjUaD1157Da+99lqFZfz8/LBq1arb7qdjx47Yvn37bcsMGzYMw4YNq1ZdiMh4IqLXUgYAISEhAHgFJtU8SkuZh4eH0a9l9yUZHcpSU1OxYcMGtGzZUm/5uXPn1G5IIiJDnTt3DleuXIGTk5N64YzSfclQRjUNB/pTdRgdysLDw3Hx4sUyoSwoKAhBQUEmqxgR2QellSw0NBTu7u4A9EOZiJhsHCuRuXGgP1WH0QP9n3vuObz22mvIyMgwR32IyM4oV14qXZcA0KpVK2g0Gmi12nInqyayVQxlVB1Gt5QNHDgQGo0Gbdq0weDBgxEeHo7OnTujQ4cOercyIiIyxMWLFwGUBDGFm5sbmjVrhpSUFCQnJ5e5mwaRLSouLkZubi4AhjKqGqNbyk6ePInvv/8eU6ZMQUZGBt58803cdddd8PT0RMeOHc1RRyKqxZR7wnp7e+st57QYVNMoV14CVQtlSve9EuzI/hjdUubr64shQ4ZgyJAh6rKsrCwcOnQIhw8fNmnliKj2U0KZl5eX3vLg4GBs3ryZg/2pxlC6Lh0dHat0NxeGMjI6lNWvXx+NGzfWu+9laGgoevTogZ49e5qjjkRUi2m1WgBlW8o4LQbVNKXHk1Xl4hSGMjI6lB05cgSJiYk4dOgQ9u7di5UrVyIjIwNubm7o0KEDdu/ebY56ElEtdbuWMoChjGqO6gzyB/4NZTdv3jRZnahmMTqUtWvXDu3atUNMTAyAkokfN2/ejKeffhp9+vQxeQWJqHarLJSlpKQgPz+/St1BRJZkqlDGljL7ZfRA/1tpNBo88MAD+Prrr5GWlmaKOhGRnRCRCkNZo0aN4OzsjOLiYk6LQTVCdUNZnTp1ADCU2bNqhzLF3XffjW3btplqc1QD5efnc/46Mkpubi6Ki4sBlB1TptFo4OPjAwDIzMy0cM2IjMeWMqouo7sv69atiw4dOiA0NBQdO3ZEaGgoQkJCsHfvXty4ccMcdaQa4oknnsD333+Po0eP6s05RVQRZZC/RqMp916BPj4+uHr1KkMZ1QjVuRk5wDFlVIVQ9v333yMxMRGJiYlYvHgxTp8+rd4GZd68eeaoI9UAeXl5+OGHH1BQUICEhASGMjJI6a7L8q5WY0sZ1SRsKaPqMjqU9e/fH/3791ef37x5EykpKahXrx78/f1NWjmqOfbs2aPeRPfSpUtWrg3VFBWNJ1MwlFFNooSy8lp9DcExZWR0KLtVnTp10K5dO1PUhWqwuLg49f+V2+YQVYahjGoTtpRRdRk90L+oqAhvvPEGwsPD0aVLF4wZMwaxsbHmqBvVIH/99Zf6/2wpI0NVNHGsgqGMahJThbK8vDzodDqT1YtqDqND2QsvvIAPP/wQffv2RVRUFPLz8/HQQw9h7NixEBFz1JFsXGFhIXbt2qU+ZygjQ7GljGoTU4UygDclt1dGd1+uWrUKq1evRq9evdRlKSkpeOihh/D2229j+vTpJq0g2b79+/frXS3E7ksyFEMZ1SamDGW5ubnqGDOyH0a3lOXk5KBJkyZ6y5o3b46lS5di5cqVJqsY1RxK12Xnzp0BlLSUsdWUDMFQRrVJdUOZk5MTnJ2dAXBcmb0yOpT16NEDX3zxRZnlzZs3Z7eVnVJC2YgRIwAABQUFnESWDMIxZVSbVDeUARzsb++MDmULFizA+++/j2eeeQYnT54EUDKmaOnSpbjzzjtNXkGybcXFxdixYwcA4P7770f9+vUBsAuTDMOWMqpNTBnKOIGsfTI6lLVv3x5//vkn4uPjERwcDDc3N9SpUwdfffUV3n//fTNUkWzZqlV/48aNdfDwuBcdO3ZEQEAAAA72J8MwlFFtYopQxrnK7JvRA/137doFLy8v7N27FydOnMCxY8fg6emJsLCwCj9YqfZauTIPQB/ccUc2HB0d0bhxYxw+fJihjAzCUEa1CbsvqbqMDmWTJ0/GlClT0L59e4SEhCAkJAQAcPr0aWg0Gnh6epq8kmRbzp0D/vkH0GiAPXuaAwD++acvDhwAXFzCARxl9yUZRAllhowpU27nRmSrGMqouozuvkxOTkbv3r3LLP/9998RHR1tijqRjWvWDOjWDejaFSgoKGnhyM6ug65dgZ9/ng3gHFvKyCDKQP/KWsp0Op36hUdki0Sk2jckBzimzN4ZHcq8vLxw/fr1Mst79uyJ3bt3m6RSZNu+/hpwUttYlbdQSQuGg4MOQAxDGRmksu5Ld3d3dYoAdmGSLcvPz0dxcTEAjimjqjM6lPXv3x9vv/122Q05OKCgoMAklSLbFhMDJCSUv+6dd3YAWMXuSzJIZaFMo9HA19cXAEMZ2bZr164BABwdHat8Q3KA3Zf2zuhQNm/ePPz1118YOnQojhw5AqDkdhALFixAx44dTV5BsnUlvwwd/v876Y47SqbEYEsZVUZEKh1TBnCwP9UMaWlpAICGDRvCwcHor1YVQ5l9M3qgf2BgIHbv3o2nnnoKoaGhcHV1RVFREby9vfHrr7+ao45kgxo0AHx8cpGZeQQtW/4FP7/pSE0F2rYtCWXp6ekoKiqCk5PRbzGyEzdv3lS7e2535TZDGdUESijz9/ev1nY4psy+VekbMygoCBs3bsT58+eRmJgIZ2dnhIWFwc/Pz9T1IxvVpAkwb97XePrpCWjXbhDWrZuOggLAyakeHB0dUVxcjPT0dDRu3NjaVSUbpbSSaTSa23b3MJRRTZCeng6g+qGMY8rsW7WaMZo2bYqmTZuaqi5Uw2Rnl4yh8PPzg0YDuLoCgCP8/f1x8eJFXLp0iaGMKlR6PNntprpgKKOaoHT3ZXWw+9K+Vb3jm+yecn/LW1tIlSDGcWV0O4aMJwMYyqhmMHX3JUOZfWIooypTQplydZxCudUSr8Ck26lsjjKFEsrKm4qHyFaYqvuSY8rsG0MZVZnyJXlrSxnvf0mGqGw6DAVbyqgmMFX3JceU2TeGMqoydl9SdTCUUW3C7ksyBYYyqrKKQhm7L8kQHFNGtYmpuy8ZyuwTQxlVWWVjythSRrfDljKqLXJzc9Uxkrz6kqrD5kPZjRs3MHXqVAQFBcHd3R333HMP9u7dq64XEcyZMweNGjWCu7s7IiIicPLkSb1tZGRkICYmBl5eXvDx8cG4cePK3Nz48OHD6NmzJ9zc3BAYGIiFCxeWqcvatWsREhICNzc3dOjQARs3bjTPQdcQFY0pY/clGcLYgf4MZWSrlFYyV1fXSlt+K6OMKeNAf/tk86HsySefRGxsLL766iscOXIEkZGRiIiIULvGFi5ciCVLlmDFihVISEiAh4cH+vXrh7y8PHUbMTExOHr0KGJjY7F+/XrExcVhwoQJ6vqsrCxERkYiKCgI+/fvx6JFizB37lysXLlSLbNr1y5ER0dj3LhxOHjwIKKiohAVFYWkpCTLnQwbkp+fj5ycHAAVd19mZGTw1x5ViC1lVFuUHk92uzn3DMGWMjsnNuzmzZvi6Ogo69ev11vepUsXeemll0Sn04m/v78sWrRIXZeZmSmurq7y7bffiojIsWPHBIDs3btXLbNp0ybRaDRy8eJFERH58MMPxdfXV/Lz89UyM2fOlODgYPX58OHDZcCAAXr1CAsLk4kTJxp8PFqtVgCIVqs1+DW26vLlywJANBqNFBcX663T6XTi5uYmAOT06dNWqiHZuhEjRggAef/9929b7tKlSwJAHBwcyrzXiGzBunXrBICEhYVVe1vx8fECQJo3b26CmpGpWOr726ZbyoqKilBcXAw3Nze95e7u7tixYwdSUlKQlpaGiIgIdZ23tzfCwsIQHx8PAIiPj4ePjw+6deumlomIiICDgwMSEhLUMr169YKLi4tapl+/fkhOTla76OLj4/X2o5RR9lOe/Px8ZGVl6T1qC2U8mY+PT5mb72o0GnZhUqWMbSnT6XRlhh0Q2QJTTYcBsKXM3tl0KPP09ER4eDjmzZuHS5cuobi4GF9//TXi4+Nx+fLlCv8QGjZsqK5LS0tDgwYN9NY7OTnBz89Pr0x521DW3a6Msr488+fPh7e3t/oIDAw09hTYrIrGkyl4BSZVxtAxZW5ubuoPJnZhki0y1XQYAMeU2TubDmUA8NVXX0FE0LhxY7i6umLJkiWIjo4u0zpji2bNmgWtVqs+UlNTrV0lk6loOgwFr8CkyhjaUqbRaDiujGyaqabDANhSZu9sPtm0bNkSf/31F7Kzs5Gamoo9e/agsLAQLVq0UP8AlD8IRXp6urrO398fV65c0VtfVFSEjIwMvTLlbUNZd7syt/sjdHV1hZeXl96jtqhoOgyF0n3JljKqiKHzlAEc7E+2zRzdl4WFhSguLq729qhmsflQpvDw8ECjRo1w/fp1bNmyBYMHD0bz5s3h7++PrVu3quWysrKQkJCA8PBwAEB4eDgyMzOxf/9+tcwff/wBnU6HsLAwtUxcXBwKCwvVMrGxsQgODlZDR3h4uN5+lDLKfuxNZS1ld9xxBwDg2rVrFqsT1SyGtpQBDGVk20zZfamEMoCtZfbI5kPZli1bsHnzZqSkpCA2Nhb33XcfQkJCMHbsWGg0GkydOhWvv/46fvnlFxw5cgSjR49GQEAAoqKiAABt27ZF//79MX78eOzZswc7d+7ElClTMGLECLWLbeTIkXBxccG4ceNw9OhRrFmzBosXL8a0adPUejz77LPYvHkz3nnnHZw4cQJz587Fvn37MGXKFGucFqurbEyZ0vqhjBsiKk1EGMqo1jBlKCt9YRvHldkfJ2tXoDJarRazZs3ChQsX4Ofnh6FDh+KNN96As7MzAGDGjBnIycnBhAkTkJmZiR49emDz5s16b+xvvvkGU6ZMQd++feHg4IChQ4diyZIl6npvb2/89ttvmDx5Mrp27Yr69etjzpw5enOZ3XPPPVi1ahVefvllvPjii2jdujXWrVuH9u3bW+5k2JDKWsoYyuh2bt68qXbNMJRRTSYi6tAWU3RfOjg4wM3NDXl5eWwps0M2H8qGDx+O4cOHV7heo9Hgtddew2uvvVZhGT8/P6xateq2++nYsSO2b99+2zLDhg3DsGHDbl9hO1HZmDKGMrodpZXMwcEBHh4elZZnKCNblZ2drbZomSKUASVdmAxl9snmuy/JNhnafckvUSpP6a5LQ2ZAZygjW6V0XdatWxd169Y1yTZ5Bab9YiijKmH3JVWHMePJAIYysl2mnA5DoYQyjimzPwxlVCXGhDIRsVi9qGYwdOJYhdJNzlBGtsaU02EolAlk2VJmfxjKqEoMHVNWWFiod3N4IsC4OcoAtpSR7TLllZcKdl/aL4YyMppOp1O/HCtqKfP09FTHCrELk27F7kuqLczZfclQZn8YyshoWVlZ0Ol0ACpuKXNwcFC/cBnK6FYMZVRbmKP7kqHMfjGUkdGUrkt3d3e9+eBuxcH+VBFjx5QxlJGtMkf3JW9Kbr8YysholQ3yVzCUUUWqOqZMq9WqrbREtoBjysiUGMrIaJXNUaZgKKOKVLX7UqfTITs721zVIjKaKWfzVzCU2S+GMjKasS1l7HKiWxkbytzc3ODq6gqA7yeyHSLCljIyKYYyMlpl02Eo2FJGFTF2TBnAcWVke65fv47CwkIA5pmnjGPK7A9DGRmNY8qouowdUwYwlJHtUboufX191ZZcU2BLmf1iKCOjcUwZVZex3ZfAv6FMef8RWZs5psMAGMrsGUMZGc3QlrLSV8wRlcZQRrXBpUuXADCUkekwlJHROKaMqqsqY8rq168PAPjnn3/MUiciYx07dgwAEBwcbNLtckyZ/WIoI6NxTBlVR1FRkTourF69ega/TmmNULqMiKztyJEjAIAOHTqYdLtsKbNfDGVkNI4po+ooPVC/stbW0pRQpgyuJrK2w4cPAwA6duxo0u0ylNkvhjIyGlvKqDqU94+3tzecnJwMfh1DGdkSrVaLc+fOAWBLGZkOQxkZzdgxZZzCgEq7du0agMpD/a0YysiWJCUlAQCaNGliVIuvITimzH4xlJFRcnNzkZeXB8C4ljIRMXvdqGYwtKX1VsqM6QxlZAvMNZ4MYEuZPWMoI6Mo48kcHR0rvXJOCWVFRUX8cCGV0lJmzCB/4N+WsqtXr6K4uNjk9SIyhjKejKGMTImhjIyitHL4+PhAo9HctmzdunXVMhxXRoqqtpTdcccd0Gg00Ol0arAjshalpczUg/wBhjJ7xlBGRjHmC9XBwYGD/amMqoYyJycntXWN02KQNYmIWbsvlTFlubm5HPphZxjKyCiGToehYCijW1W1+xLgYH+yDampqdBqtXByckJISIjJt6+0lBUXF6s3PCf7wFBGRjG2lYOhjG5V1ZYygKGMbIPSShYSEgIXFxeTb18JZQC7MO0NQxkZRfkwCgoKMqg8QxndqjqhjFdgki0w16SxChcXF3U8LkOZfWEoI6Ns27YNAHDvvfcaVJ6hjG7F7kuq6cw5ngwANBqN3rgysh8MZWSwjIwMHDp0CADQu3dvg17DCWTpVuy+pJrO3C1lwL9dmJxA1r4wlJHB4uLiICIICQlRu5Eqw5YyuhVDGdVk+fn5SE5OBmC+ljKA02LYK4YyMtiff/4JALjvvvsMfg1DGZVWVFSkvheq033JKTHIWk6cOIGioiL4+PigSZMmZtsPQ5l9YigjgynjyQztugQYykifMqUKUDIBsbHYUkbWVno8WWUTaFcHx5TZJ4YyMsi1a9fUcRTGhDLli5ehjIB/uy69vb3h5ORk9OuVbvOrV69Cp9OZtG5EhrDEeDKAY8rsFUMZGeSvv/4CANx5551o0KCBwa9jSxmVVp0rL4GSWy0BJZNq8lZLZGkigi1btgAAOnfubNZ9sfvSPjGUkUGUrktjxpMBDGWkrzqD/AHA2dlZDXTswiRLS0hIwOHDh+Hm5oaHH37YrPtiKLNPDGVkEGWQvzFdlwBDGelTWreqGsoAjisj6/noo48AAMOHD4evr69Z98UxZfaJoYwqdfXqVSQlJQEwfNJYBUMZlaa0lFW1+xJgKCPryMzMxJo1awAAEydONPv+OKbMPjGUUaWU8WTt27dXx/QYqnQoExGT141qlup2XwKcFoOs46uvvkJubi7at2+P8PBws++P3Zf2yaZDWXFxMWbPno3mzZvD3d0dLVu2xLx58/S+3EUEc+bMQaNGjeDu7o6IiAicPHlSbzsZGRmIiYmBl5cXfHx8MG7cOGRnZ+uVOXz4MHr27Ak3NzcEBgZi4cKFZeqzdu1ahISEwM3NDR06dMDGjRvNc+A2pqrjyYB/Q1lRURF/8VG1B/oDvP8lWZ6IqF2XEydONOtUGAqGMvtk06FswYIFWL58OT744AMcP34cCxYswMKFC7F06VK1zMKFC7FkyRKsWLECCQkJ8PDwQL9+/ZCXl6eWiYmJwdGjRxEbG4v169cjLi4OEyZMUNdnZWUhMjISQUFB2L9/PxYtWoS5c+di5cqVapldu3YhOjoa48aNw8GDBxEVFYWoqCi1W6+2EhFs2rQJANCnTx+jX1+3bl04OJS8zdiFSaZsKWMoI0vZtWsXjh49Cnd3dzz22GMW2SdDmZ0SGzZgwAB54okn9JY9/PDDEhMTIyIiOp1O/P39ZdGiRer6zMxMcXV1lW+//VZERI4dOyYAZO/evWqZTZs2iUajkYsXL4qIyIcffii+vr6Sn5+vlpk5c6YEBwerz4cPHy4DBgzQq0tYWJhMnDjR4OPRarUCQLRarcGvsbZDhw4JAHFzc5Ps7OwqbcPHx0cAyLFjx0xcO6pp7r//fgEgX375ZZW38emnnwoA6d+/vwlrRlSxUaNGCQB5/PHHLbbPefPmCQCZMGGCxfZJFbPU97dNt5Tdc8892Lp1K/7++28AwKFDh7Bjxw488MADAICUlBSkpaUhIiJCfY23tzfCwsIQHx8PAIiPj4ePjw+6deumlomIiICDgwMSEhLUMr169YKLi4tapl+/fkhOTlZnII+Pj9fbj1JG2U958vPzkZWVpfeoaX766ScAQGRkJDw8PKq0DU4gSwpTdF+ypYwsKTMzE2vXrgVgmQH+Cg70t0/GT6ltQS+88AKysrIQEhICR0dHFBcX44033kBMTAyAfwf6Kh/SioYNG6rr0tLSykx26uTkBD8/P70yzZs3L7MNZZ2vry/S0tJuu5/yzJ8/H6+++qqxh21T1q1bBwCIioqq8jZ4BSYp2H1JNc3q1auRl5eH9u3bIywszGL7ZfelfbLplrLvvvsO33zzDVatWoUDBw7giy++wNtvv40vvvjC2lUzyKxZs6DVatVHamqqtatklLNnzyIxMREODg4YOHBglbfDUEYKU4ayK1eu8FZLZHaffvopAOCJJ56wyAB/BUOZfbLplrLp06fjhRdewIgRIwCU3AD23LlzmD9/PsaMGaN3FVajRo3U16Wnp6NTp04ASq7UunLlit52i4qKkJGRob7e39+/zK9u5XllZZT15XF1dYWrq6uxh20zfv75ZwBAz549Ub9+/Spvh6GMAKCwsFDtwq9O96XS8q38HVfnvUl0O0eOHMHevXvh5ORksQH+Ck4ea59suqXs5s2b6pV7CkdHR/XXcfPmzeHv74+tW7eq67OyspCQkKDOIxMeHo7MzEzs379fLfPHH39Ap9OpTdHh4eGIi4tDYWGhWiY2NhbBwcHqrM3h4eF6+1HKWGK+GmsxRdclwFBGJZTxmcC/4wyrwsXFRW1pYxcmmdNnn30GABg4cKDRczRWF8eU2SebDmUDBw7EG2+8gQ0bNuDs2bP46aef8O6772LIkCEAAI1Gg6lTp+L111/HL7/8giNHjmD06NEICAhQg0Tbtm3Rv39/jB8/Hnv27MHOnTsxZcoUjBgxAgEBAQCAkSNHwsXFBePGjcPRo0exZs0aLF68GNOmTVPr8uyzz2Lz5s145513cOLECcydOxf79u3DlClTLH5eLOHatWuIi4sDwFBGpqEM8vfx8YGjo2O1tsVxZWRuBQUF+OqrrwCUdF1aGrsv7ZRZr+2spqysLHn22WeladOm4ubmJi1atJCXXnpJb+oKnU4ns2fPloYNG4qrq6v07dtXkpOT9bZz7do1iY6Olrp164qXl5eMHTtWbty4oVfm0KFD0qNHD3F1dZXGjRvLW2+9VaY+3333nbRp00ZcXFykXbt2smHDBqOOpyZNifHZZ58JAOnUqVO1t/Xiiy8KAJkyZYoJakY11Y4dOwSAtGzZstrb6t27twCQVatWmaBmRGX9+OOPAkD8/f2lsLDQ4vvfvn27AJDWrVtbfN9UlqW+v216TJmnpyfef/99vP/++xWW0Wg0eO211/Daa69VWMbPzw+rVq267b46duyI7du337bMsGHDMGzYsNuWqS1M1XUJsKWMSphikL+CLWVkbsoA/zFjxsDJyfJflXXr1gUA3Lhxw+L7Juux6e5Lso7s7Gz89ttvABjKyHSU7kuGMrJ1iYmJ6m30xo4da5U68HPTPjGUURk///wzcnNz0apVK3Ts2LHa2+PksQT821JWnSsvFbz/JZnLZ599hvDwcOh0OvTp0wfBwcFWqYcSynJzc/UuQqPajaGMyvj2228BlFwAYYp5efiLjwDTdl82btwYAHDq1Klqb4sIKLnKcezYsXjiiSeQl5eH/v37Y82aNVarj5eXl/r/NfFuMFQ1DGWk559//sGWLVsAANHR0SbZJkMZAabtvlSms9mzZw/y8/OrvT2yb8nJyQgLC8Pnn38OBwcHvP7669iwYYNV58BzcnJSb23Hz077wVBGer7//nsUFRWhS5cuCAkJMck2le6qf/75xyTbo5rJlN2Xbdq0QYMGDZCfn499+/ZVe3tkv9asWYNu3bohKSkJDRs2xO+//46XXnqpzByZ1sAftPbH+u86sinKVaojR4402TaV8T83btxATk6OybZLNYspuy81Gg169OgBAJVeNU10KxFBfHw8oqOjMWLECGRnZ6N3795ITEzEfffdZ+3qqZQuTIYy+8FQRqrz589j+/bt0Gg0ePTRR022XU9PT3UixNvdwJ1qN1N2XwIlt/8CGMrIOKtWrUJoaCjuuecerF69GgDw0ksvITY29ra3zbMGtpTZH5uep4wsS/mA6tWrF5o0aWKy7Wo0GjRq1AhnzpxBWloaWrZsabJtU81hyu5L4N9QtnPnThQXF1f7LgFU+8XHxyMmJgZAyYz5jz76KCZPnoxu3bpZuWblYyizPwxlduzGjRvYunUrAgIC0KZNG7N0XSr8/f3VUEb2ydQtZaGhoahbty60Wi2SkpIQGhpqku1S7aVcWT5gwAB8/fXX1boHqyUooYxXX9oPhjI7JSKIjo7Ghg0b9JY7Oztj6NChJt+f0i3AUGafCgoKkJ2dDcB0oczJyQn/+c9/sGXLFsTFxTGU0W3pdDr88MMPAICJEyfafCAD2FJmjzimzE6tW7cOGzZsgJOTExo1aqQuHzZsmMm6l0pT9nH58mWTb5ts3/Xr1wGUdGWb8suQ48rIUPHx8bh06RK8vLwQGRlp7eoYhKHM/jCU2aGcnBw8++yzAIAZM2bg0qVLyMrKwtGjR9X7vZkaW8rsm9J16ePjY9KxX6VDmYiYbLtU+6xduxYAMGjQILi6ulq5Nobh1Zf2h6HMDs2bNw+pqakICgrCSy+9BKDkCsk777zTbB9WDGX27cqVKwBg8sk4u3fvDhcXF6SlpeH06dMm3TbVHjqdDt9//z2Akt6AmoItZfaHoczOHD9+HO+88w4AYMmSJahTp45F9quEMnZf2ifldkgtWrQw6Xbd3Nxw1113AWAXJlVs9+7duHjxIjw9PWtM1yXAUGaPGMrsiIhg8uTJKCoqwsCBAzFo0CCL7VsZU8aWMvt08uRJAEDr1q1Nvm2OK6PKKK1kAwcOhJubm5VrYziGMvvDUFZLJCQk4OOPP0ZBQUGFZb744gts27YN7u7uWLx4sQVr929LWXp6OnQ6nUX3TdZniVC2detWfnnVcp9++il69uyJ5ORkveV5eXl48skn8cwzz6gXlShqatclwCkx7BFDWS2wadMm9OrVC+PHj0dYWBiSkpLKlLly5Qqef/55AMCrr76K5s2bW7SODRo0gEajQXFxsTrom+yHOUNZjx494O3tjfPnz6Nr1644cOCAyfdBlpOTk4NnnnkGf/31l97yvLw8zJgxAzt27MCQIUPUKVZEBP/973/xySefYOnSpbjzzjvx888/q69ZtWoVUlNTUbduXfTr18/ix1MdbCmzQ0IWo9VqBYBotVqTbTM2NlZcXV0FgDg6OgoAcXFxkUWLFklhYaFaLjo6WgBIp06d9JZb0h133CEA5NChQ1bZP1lHcXGxuLm5CQA5efKkWfaRkJAgQUFB6vt/2bJlotPpzLIvMtzFixdlyZIlcu3aNYNfs2jRIgEgjRs3lvz8fHX5qlWrBID6ePTRR0Wn08mKFSsEgDg4OEiLFi3U9aGhoer7DoBER0eb4xDN6u+//xYA4unpae2q2D1zfH+Xh6HMgpR/1MzMTNm8ebO89957kpeXV+Xt/fnnn+Lu7i4AZPDgwXL+/Hl56KGH1A+h5s2by7Jly+SHH35QP7T27t1rwiMyTocOHQSAbNmyxWp1IMs7f/68ABAnJyez/iDIyMiQwYMHq+//yZMnS1FRkdn2R7d37tw5adasmQCQHj16SEFBgUGvu+uuu9R/w88++0xd3rt3bwEggwYNEicnJwEgEyZMEGdnZwEg8+fPl9zcXHnhhRfEwcFB3UajRo1k1KhRkpKSYp4DNaP09HT1OPheti6GslpI+Ue988471T+0uXPnVmlbBw4cEA8PDwEgDz74oBrudDqdfPzxx1KvXj29X5UA5LnnnjPl4Rjt/vvvFwDyxRdfWLUeZFlbt24VANK6dWuz70un08miRYtEo9EIABk+fLhBP3y+/fZb8fDwkC+//NLsdbR1//zzT7VbGS9cuCAtW7bU+/x5/vnnK33dmTNn9F7Ttm1bKS4uluTkZPWH5blz52Tx4sV65R5++GG9Oh8+fFg+//xzOXbsWI1uMc3Ly1OP8fr169aujl1jKKuFlH9UAOqvO19fX8nKyqrwNVlZWXLw4EG9D5aLFy9K48aNBYD06dNHcnNzy7wuJydHli5dqnbpBAUFyY0bN8xyXIYaPXq0AJC33nrLqvUgy1K6lwYMGGCxfa5evVr9G+vbt+9t/8by8/MlMDBQAEjdunVrZIuKqaxevVocHR1lwIAB5X6uKPLy8mT79u3ltnxevnxZ2rRpo7bWf/DBB+rn3g8//HDb/S9YsEAASPfu3cXLy0sAyM8//yz/+9//9N5DOp1OHn30UQEgISEht/33remU4Slnz561dlXsGkNZLaT8o86dO1f++ecfCQ4OFgCyYMGCcstfuHBBWrVqJQBk4MCBcu7cOcnOzpauXbuqvyIr+/VUUFAgW7ZskQsXLpjhiIwzY8YMASBTp061dlXIgqZNm2aVf/fY2FipW7eu2pJSkU8++USv1aVv374207pSVFQkO3fulBdffFFGjx4tr7zyinz55Zeyf/9+k+/rxo0b4u/vr56HAQMGlNvKuHv3brW1f+zYsWXq261bNwEgTZs2VYPE888/LwDEy8tL/v777wrroHy2rVixQmbOnCkAJCwsTOrXr68GNEVubq6sWrVKrly5YqIzYJsaNGjAsbg2gKGsFrr1H/Xzzz8XANKgQQPJycnRK3vp0iX116by8PDwkO7duwsAqV+/vpw+fdoah1Fl7777rgCQESNGWLsqZEEDBw4UALJs2TKL7zs+Pl4df/T999+XWV9YWKj+8HnqqafUMZofffSRxetaWn5+vjz99NPlDkNQHi+//PJtt1FQUCAHDx40eBzfiy++qA6wLz1WNT8/XwoLC+X8+fMybdo0vfFaAGT37t3qNpRWMR8fHzl16pReXXr06CEApHPnzuWOLzt16pTaRXnlyhW5dOmSuLi4qPsJCAiw2kVK1tS6dWsBINu3b7d2VewaQ1ktdOs/akFBgToQdvHixWq5tLQ0CQkJUbsdt2zZIj179lQ/nFxcXGTHjh3WOowqU66e6t27t7WrQhakvJd/++03q+z/5ZdfFgDSsGHDMlcBKu9JPz8/uXHjhrz33ntqN2Z1uovS0tJk8+bN5Q7Ozs7OLvMj7FYvvfSS+vfu4+Mjjz76qMybN0+efPJJuffee9V1FV00k5GRIf/5z3/UH31TpkyRXbt2VdgCmJKSonaTrVu3Tu+qbh8fnzJBbNSoUWr3Yffu3aW4uFjS09PFx8enwgB+8eJF8fX1FQDyxhtvlFk/f/58ASARERHqsvHjx6v7nD179m3PWW2ltB6uX7/e2lWxawxltVB5/6jKeJsmTZrI6dOn5a233lKDmrJMpGRagY8//ljCwsIqHZdhq7Zt2yYAJDg42NpVIQspKipSWzusNVYrLy9PDYaPP/64ury4uFjat28vAGTevHlqfZUwc//99xvdjVlcXCzLly8Xb29vdRv//POPuv6LL74QDw8Padq0qaSmppa7jV27dqkhaOXKleW2Dj311FNq0ExLS9Nbd+HCBfW4bn0MGzas3KA4bNgwdYyqcsybNm1SgxlQcvVsu3btZMOGDSJSMnbM09NTAMjnn38uY8eOVVvCKrpS8Msvv1R/WCYlJemt69y5s3rMiuTkZHFwcBAHBwe7HVPVp08fASDffPONtati1xjKaqHy/lHz8vIkICCgzIdnkyZNzDank7UcP35cAIi3t7e1q0IWolxN5+LiYtVL+nfu3Klekfnpp5/K3r17Zfny5eo4p9JjM5OTk9X5rf7v//7P4H0cPnxYwsPDy/wtN2vWTOLi4uSxxx7TW96pU6cyF9/cuHFDvWoxJiamwn3dvHlTnWImMjJSiouLpaCgQBISEqRp06YClEwFsX//ftm4caM89thj6oUPt16F/ddff6ndhreOW7p69ars27dPLl++LMXFxWXqsXDhQrU1TTmu+Pj4Cuut0+lkwIABagub8p44efKkACVzLV69elXvNVu2bLFaK6stGDJkiACQDz/80NpVsWsMZbVQRf+oS5cuVT/QevXqJR9//LHZ/+Gt4fr16+px3rx509rVIQvYsmWLACUXpVjbM888U27r0Ysvvlim7Ntvvy1AyaSd586du+12T58+LaNGjVJbt+rWrStLliyRgwcPlpkWwsHBQWbMmKEO3h44cKBeWJ04caL6o6yyi3iOHj2qjv1q1qyZGrqAkulHbm2Z/Pbbb9X1H3zwgRQXF8vixYulTp06ApTM+WWsvLw8dUweAHniiScqfU1qaqp6ZeWUKVNk7ty5api9//77ja5Dbff4448LUDIPG1kPQ1ktVNE/qk6nk99++03OnDljpZpZhk6nU1sgavuxUgll4PfgwYOtXRW5ceOGPPDAA9KiRQsJDAyURo0ayV133aXXvagoKiqSu+++WwBIv379RKfTSXZ2tsyfP1/uvvtu6dOnjwwbNkweeeQR9UICAPLII4/odUtmZGTIgw8+KAAkMDBQHawdHx+vdg3GxMTIc889pzdWbOvWrQYd08qVK/VCn4eHhzz00EOSnp5ebvk33nhDDYdKdyEAuffeeyUjI6MKZ1Xk119/VVvLDL0S8uOPPy43IH/11VdVqkNt9uyzzwoAeeGFF6xdFbvGUFYLWeof1ZYp4+V27dpl7aqQBShfKP/73/+sXRWjHT9+XA1Oo0ePloYNG5YbJJTgVtHdMoqLiyUuLq7M3/2aNWvK3dasWbMMrqNOp5MtW7bIxo0b5ezZs+V2Md5afty4ceq+PD09Zfny5ZW+rjIbN26UI0eOGFXvSZMmSZcuXWTMmDHy7rvvyo4dO2xmKhJbMmfOHAFKrg4m67HU97cTiCzI398fZ8+eRVpamrWrQhZgzhuRm1tISAjmzZuHGTNm4MsvvwQAtGjRAjNmzICnpyeuXbsGrVaL3r17o0ePHhVux8HBAT179iyzfPjw4cjIyMDatWvRvn17dOnSBd26dUO7du0MrqNGo0FkZKRR5ZcvXw5HR0fk5ORg/vz5CAwMNPj1FXnggQeMKq/Ugyrn5eUFAMjKyrJyTcgSGMrIovz9/QEAly9ftnJNyBL+/vtvADUzlAHAtGnTsH37dhw9ehTTp0/HE088ARcXF5Ntf9KkSZg0aZLJtmcIZ2dnfPTRRxbdJ1Wdt7c3AECr1Vq5JmQJDGVkUY0aNQIAtpTZgcLCQqSkpACouaHM0dERv/zyi7WrQXaMocy+OFi7AmRflJYyewplWq0WImLtaljc2bNnUVxcDHd3dwQEBFi7OkQ1EkOZfWEoI4uyt1AWFxeHevXqYcSIEdDpdCbffnZ2tlm2KyLIzc2tVphUxpO1atUKDg78qCGqCoYy+8JPSrIopfvSXsaUvfbaayguLsZ3332HN99806Tb3rp1Kxo1aoTg4GDs2LFDb11cXBzmzJmDS5cuGby9AwcOoH379qhTpw4cHBxQp04dhIaGVmmA8alTp/DNN98AANq0aWP064moBEOZfWEoI4uyp5ayAwcOYOvWrdBoNACAOXPmYMOGDQa99syZMzh//nyF6+Pj4zF48GBkZ2fj1KlT6NWrF55//nn8+eefiIiIwL333ot58+ahZ8+et92O4p9//sGQIUNw9OhR5ObmqsuPHDmCCRMmGNxi9sMPP6Bbt25o3bo1Vq1aBQDo3LmzQa8lorJKX31pj8MgbIXFzr1ZJ9wgPZynTOT8+fMCQJydnas9N5K15efn33ZepZEjRwoAGTlypHqvQm9vb/n7778rfM3Bgwdl4MCB6jxSffr0kVWrVklubq5emdL3VnziiSfKzHXl7OyszhrfrFkzdXb3mzdvyq+//ipbtmxRz39RUZFERkYKAGnVqpWcOHFC0tLSZNu2berEqMuXL6/0fLz//vvq/h0dHSUyMlI+/fRTKSgoMPCMEtGtsrOz1b+rW2/LRZaRlpYm/fv35+SxIiJBQUHlTrD43//+V0REcnNz5b///a/4+fmJh4eHPPzww2Vu0Hvu3Dl58MEHxd3dXe644w753//+V+Ymv9u2bZPOnTuLi4uLtGzZUj777LMydfnggw8kKChIXF1dpXv37pKQkGDUsTCUlQQZ5d/w1nvc2YKrV6/K/fffX+6td0qLjY2VunXrSrNmzWT27Nll7lN69uxZcXR0FABy4MAByc/Pl3vuuUcASMuWLWXnzp165ZOSkuSRRx7Rux2Pcq9GoOTekc2bN5cePXpIvXr1BID06NFDsrOzRURkw4YNEhAQII6OjvLkk09KSkqKnD9/Xr0FTtOmTSU6Olrq1q2rbrNr164SGxsrr7zyigAQd3f3Mvc+VG435OrqKgcOHCj3XOh0OnWCS/z/W+cYOrM7Ed2eTqdTP0suXLhg7erYlO3bt8uECRNkx44dZtvHDz/8IPXr11c/3+w+lF25ckUuX76sPmJjYwWAbNu2TUREJk2aJIGBgbJ161bZt2+f3H333XLPPfeory8qKpL27dtLRESEHDx4UDZu3Cj169fXmzX7zJkzUqdOHZk2bZocO3ZMli5dKo6OjrJ582a1zOrVq8XFxUU+/fRTOXr0qIwfP158fHwqvJ1JeRjKSiih4vDhw9auip7i4mJ54IEH1D++/fv3l1tu586d6v0CSz/69OkjiYmJIiLy3HPPCQDp27ev+rpLly5JYGCgWn7SpEmyb98+GTlypBrANBqNREdHy4kTJ+TcuXMyd+5c9QbTpR9dunSRzMxMvXrdvHmzTNC9cOGCtGnTRu+1gYGB4unpadAtbnQ6ndpy16pVK8nKyiqzXpm1H4C8/vrrnJWdyMT8/PwEgBw9etTaVbEJR48elUGDBqmfO05OTrJixYoKy2/cuFE6deok77zzjt69Zm+VnZ0t33//vSxfvlzeeOMNGTp0qLqPdu3aMZSV59lnn5WWLVuKTqeTzMxMcXZ2lrVr16rrjx8/LgAkPj5eREr+MRwcHPRaz5YvXy5eXl6Sn58vIiIzZsyQdu3a6e3n0UcflX79+qnPu3fvLpMnT1afFxcXS0BAgFE3iWUoK9GpUycBIOvXr7d2VfS89dZbeiHlgQceKFPmwIEDatdhv3795JtvvpF+/fqpN6N2cHCQyZMnqy1SmzZt0nv9tWvX9G5zU/oxdOjQcm9VU1xcLGfOnJEdO3bImjVr5MsvvzTqPXTp0iWJiYmRadOmSXx8vBQXF8uVK1fk2WefVW9ifbtbuFy7dk0Nhi+99JLeuvXr16v1/+CDDwyuExEZrnnz5rw93f+3ePFi9fPW0dFRunbtqn4GPfXUU2WGS5w7d058fHzUMnfffbccO3as3G0PGTKkzOeyg4ODzJo1S65cucJQdqv8/HypV6+evPHGGyIisnXrVgEg169f1yvXtGlTeffdd0VEZPbs2RIaGqq3/syZM2q3kohIz5495dlnn9Ur8+mnn4qXl5e6X0dHR/npp5/0yowePVoGDRpUYX3z8vJEq9Wqj9TUVIYyEXn44YcFgCxZssTaVVHt2LFD7SJ48cUX1bFUyg2kRUSOHTsmd9xxh9p1mJOTo647e/asDBs2TO+PuX379hW2Gm3btk1twXrooYcq7Bo0tzNnzsj3339fpjv/Vj/88IMAJTe8Vn7gKK3QQM28tyVRTaH8kL31R15NVlxcLNOnT5cJEybIzZs3DXpNVlaW+oM3KipKjh8/LjqdTt588021t+Hee+9Vh08UFRVJr169BIC0adNG7SFwdXWVDz/8UG/bP/74o9rqFhUVJePGjZPp06erw5R4Q/JyrFmzRhwdHeXixYsiIvLNN9+Ii4tLmXJ33XWXzJgxQ0RExo8fL5GRkXrrc3JyBIBs3LhRRERat24tb775pl6ZDRs2CAC5efOmXLx4sdxfKdOnT5fu3btXWF9lrM6tD3sPZc8//7wAkKlTp1q7KpKeni4bN26UJk2aCACJiYkRnU4nEyZMEADSq1cv0el0smfPHrXbtbyuQ8Vvv/2mhq3SLbjlKSgokPPnz5vjsExOp9PJXXfdJQDkmWeeERGRL774QgCIj4+PZGRkWLmGRLWXEixWr15t7aoY7ezZs/L666+XGWf63nvvqd+JUVFRet2KFy5ckJdffrlMz8GKFSvUgHXrD95ffvlFDV1BQUFy6NAheeONNwSA1K1bV06ePCnnz5/XG6KijB3XarXSuHFj9Ud5eRjKyhEZGSkPPfSQ+tzWQxlbysq3bNkyASCDBw82y/avXbsm6enpcvnyZTl//rzExcXJxx9/LDNnzpQxY8bIwIEDpUePHmoQUx7BwcHq1U2pqani6uoqAGT27Nnqr7Nu3bpVeoFCQUGBpKammuXYrOn3338XoOSig+TkZPUinLfeesvaVSOq1ZRxnR999JG1q2K0Bx98UB2TpQSzQ4cOiYuLizqOVul61Ol0smXLFnVgffPmzSUvL09ESn4YhoaGCgC1J+xWR48elZYtWwoAqVOnjtrjUfrCPZ1OJ//73//U7s/169fLlClT1HGzFbXaMZTd4uzZs+Lg4CDr1q1Tl9l69+WtOKasxMaNGwWAdOjQweTbVlq4DH1oNBoJDg6WUaNGyenTp/W2NXXqVL2yffv2LTPQ3d707dtXAEhAQID639LduERkeo899pgAkEWLFlm7KkZJSUnRu4o8NDRULl68qA6aHzhwoKxdu1YtExERoVe+9DHv3r1b7Xq8du1ahfu8du2aREREqK8fPnx4mVa14uJiGT16tAAQNzc3dZ+///57hdtlKLvFK6+8Iv7+/npjX5SB/t9//7267MSJEwKUHehf+irJjz76SLy8vNQEPmPGDGnfvr3e/qKjo8sM9J8yZYr6vLi4WBo3bsyB/lWg/BvVrVvXpFfqbdq0qdxBms2aNZPIyEiZMmWKvPXWW7Jy5UpZu3atbN++/bYhKz09XTw8PNRB+Mr7xZ4lJCTond+VK1dau0pEtd7kyZMFgLz88svWropRZs2apQ75aNiwofq5D0AaNmyotpwtXbpU73Nl0qRJsnz5cgFK5na8evWqPP744wJARo8eXel+CwsL5ZVXXpERI0ZUOLSioKBArytz1KhRt90mQ1kpxcXF0rRpU5k5c2aZdZMmTZKmTZvKH3/8Ifv27ZPw8HAJDw9X1yuDkSMjIyUxMVE2b94sd9xxR7lTYkyfPl2OHz8uy5YtK3dKDFdXV/n888/l2LFjMmHCBPHx8SkzJ9rtMJSVyM3NVX+ZmGo+qxs3bqhXCJpyrNru3bvls88+u+1l1PZGuUIpODi40gsEiKj6XnzxRQEgTz/9tNXqoNPppKCgwODPwvz8fHUC6x9++EGSkpL05vu69aKFN998U1q3bi2rVq0SkZLvfeUCh8cee0zc3NzKHUZUHdnZ2TJo0CDp0qVLpd9FDGWlbNmyRQBIcnJymXXK5LG+vr5Sp04dGTJkiFy+fFmvzNmzZ+WBBx4Qd3d3qV+/vjz//PPlTh7bqVMncXFxkRYtWpQ7eezSpUuladOm4uLiIt27d5fdu3cbdRwMZf9SBlUaew4r8swzzwhQMnu9MqEqmceFCxfk8ccfl71791q7KkR2YcGCBQa3EpmSVquVLl26qOO/lJarOXPmqBc7FRUVyQ8//CAPPfSQvPnmm2rvx5o1awSANGrUSJ2mIjExUcLDww3uhlWGKCmPjh07mmUeREO2yVBWCzGU/atnz54CQL799ttqb2vXrl1qy9uWLVtMUDsiItuhdOWZ6+KoisyePbvC8bg+Pj4yefJkdQ415TFz5kzR6XRy3333CQCZM2dOtepQepLYZcuWmejIjGep72/ekJysonnz5gBKbrxdHceOHcPo0aMhIhgzZgwiIyNNUT0iIpvh7e0NANBqtRbb55UrV/Duu+8CAD777DOkp6fj+vXrWLt2Le68805kZmZi2bJlSElJgZ+fH6KjowEACxYswNixY7Ft2zY4ODjgySefrFY9Fi5cCBcXF/j6+iImJqbax2XrnKxdAbJPLVq0AFD1UKbT6fDBBx9g5syZyMvLQ+PGjdUPECKi2sQcoezUqVNwdHRUfyDf6s0330ROTg66du2KMWPGQKPRAAAeeeQRDBkyBKtXr8amTZvQq1cvPPbYY6hTpw7Cw8PxzDPP4IsvvgAAPPTQQwgMDKxWPYODg5GYmAhnZ2f1PNRmDGVkFUooS0lJMfq12dnZGDp0KH777TcAQP/+/fHpp5/Cz8/PpHUkIrIFShjJysoyyfauX7+OLl26oLi4GHFxcejatave+nPnzmH58uUAgPnz56uBTOHo6IiYmJgyLVdPP/00ioqKMG3aNADApEmTTFLftm3bmmQ7NQFDGVlFdbovFyxYgN9++w3u7u54++238dRTT5X50CAiqi1M3VL222+/4caNGwCAgQMHIiEhQa9F69VXX0VBQQHuu+8+REREGLXt5557Dg0aNMCFCxfQv39/k9TXnjCUkVUoLWWpqakoLCyEs7OzQa/LzMzEkiVLAABfffUVhg4darY6EhHZgtKhTESq/SN048aNAACNRoPLly/joYcewo4dO+Do6IjvvvtO7X588803q7Qvexj7ZS4c6E9W4e/vD1dXVxQXFyM1NdXg133wwQfIyspCu3btMGTIEDPWkIjINnh5eQEACgsLkZeXV61t6XQ6bNq0CQDw6aefomHDhjh8+DDuvvtu+Pv7Y+zYsdDpdBgyZAjuvvvuatedjMNQRlbh4OBgdBdmdnY23nvvPQDASy+9BAcHvn2JqPbz9PRUW6yq24W5f/9+XL16FZ6enhg5ciR++eUXuLu749ixY7hx4waaN2+OuXPn4ssvvzRF1clI7L4kq2nRogVOnDhh8GD/5cuXIyMjA61bt8bw4cPNXDsiItvg4OAAT09PZGVlQavVwt/fv8rbUrou77//fri4uKB79+7YuHEjfvnlFwwePBg9e/bkD14rYigjqzGmpSw3Nxdvv/02AODFF1+Eo6OjWetGRGRLmjRpgmPHjuHMmTMIDg6u8naUUPbggw+qy3r37o3evXtXt4pkAozDZDWGzlWm0+kwd+5cXLlyBc2aNeMgUiKyOx06dAAAHDlypMrbuHLlCvbu3QsAeOCBB0xSLzIthjKyGqWl7Hbdl6mpqbj//vuxcOFCAMDs2bMNvlKTiKi2UELZ4cOHq7yNLVu2QETQuXNnBAQEmKpqZEIMZWQ1lbWU/fDDD+jYsSP++OMP1KlTBx999BHGjh1rySoSEdmEjh07AqheS1l5XZdkWzimjKxGaSm7du0asrKy1Mu+AeDrr79W72nZvXt3fP3112jdurW1qkpEZFVKS9nx48eNmttRUVRUhC1btgBgKLNlbCkjq/Hy8kK9evUA6Hdhfv/99xgzZgxEBBMmTMCOHTsYyIjIrgUFBcHT0xOFhYVITk426DXx8fEYOnQo7r33XnTs2BHXr1+Hn58fwsLCzFxbqiq2lJFVtWjRAteuXcOJEyfQrFkzbN26FdHR0dDpdBg7diyWL1/Oy7OJyO5pNBq0b98e8fHxOHLkCNq3b3/b8sqP2qSkJL3lw4YN49XrNoyhjKyqefPm2Lt3L0aMGKG3PDo6Gv/3f//HQEZE9P917NhRDWXR0dG3Lbtjxw4kJSWhTp06+OSTT1CvXj3Uq1cPoaGhFqotVQVDGVnVgAEDsHbtWogIgJJfg48//jhWrlzJX3NERKUYcwXmhx9+CKDkPpS3/ugl26UR5duQzC4rKwve3t7QarV6g9rt3Y0bN6DT6eDm5gYXF5dq32yXiKg2iouLw7333oumTZvi3LlzFZZLT09HYGAgCgsLceDAAXTu3NmCtaydLPX9zZYysjpPT09rV4GIyOYpLWXnz5+HVquFt7d3ueU++eQTFBYW4u6772Ygq2E4YIeIiKgG8PX1RZMmTQBUPF9ZcXExVqxYAQD473//a7G6kWkwlBEREdUQld1uacOGDUhNTUW9evUwbNgwS1aNTIChjIiIqIaobGZ/ZYD/E088ATc3N4vVi0yDoYyIiKiGuN0VmAcPHsSWLVug0WgwceJES1eNTIChjIiIqIZQQllSUhJunTxh7ty5AIARI0agZcuWlq4amQBDGRERUQ0REhICJycnaLVapKamqsv379+PX375BQ4ODpgzZ44Va0jVwVBGRERUQ7i4uCAkJASAfhem0koWHR2trqeah/OUERER1SChoaFISkrCtGnTUL9+fTg6OmL9+vVsJasFGMqIiIhqkFmzZuHPP//EyZMn8Z///AdNmzYFUHJLpTZt2li5dlQd7L4kIiKqQdq1a4cjR44gJiYGOp0OZ8+ehaOjI2bPnm3tqlE1MZQRERHVML6+vvj666/x3XffoW3btpgzZw5at25t7WpRNfGG5BbEG5ITERHVPJb6/mZLGREREZENYCgjIiIisgEMZUREREQ2gKGMiIiIyAYwlBERERHZAIYyIiIiIhvAUEZERERkA2w+lF28eBGPPfYY6tWrB3d3d3To0AH79u1T14sI5syZg0aNGsHd3R0RERE4efKk3jYyMjIQExMDLy8v+Pj4YNy4ccjOztYrc/jwYfTs2RNubm4IDAzEwoULy9Rl7dq1CAkJgZubGzp06ICNGzea56CJiIjI7th0KLt+/Tr+85//wNnZGZs2bcKxY8fwzjvvwNfXVy2zcOFCLFmyBCtWrEBCQgI8PDzQr18/5OXlqWViYmJw9OhRxMbGYv369YiLi8OECRPU9VlZWYiMjERQUBD279+PRYsWYe7cuVi5cqVaZteuXYiOjsa4ceNw8OBBREVFISoqCklJSZY5GURERFSr2fSM/i+88AJ27tyJ7du3l7teRBAQEIDnn38e//vf/wAAWq0WDRs2xOeff44RI0bg+PHjuPPOO7F3715069YNALB582Y8+OCDuHDhAgICArB8+XK89NJLSEtLg4uLi7rvdevW4cSJEwCARx99FDk5OVi/fr26/7vvvhudOnXCihUryq1ffn4+8vPz1edZWVkIDAzkjP5EREQ1CGf0B/DLL7+gW7duGDZsGBo0aIDOnTvj//7v/9T1KSkpSEtLQ0REhLrM29sbYWFhiI+PBwDEx8fDx8dHDWQAEBERAQcHByQkJKhlevXqpQYyAOjXrx+Sk5Nx/fp1tUzp/ShllP2UZ/78+fD29lYfgYGB1TgbREREVJvZdCg7c+YMli9fjtatW2PLli146qmn8Mwzz+CLL74AAKSlpQEAGjZsqPe6hg0bquvS0tLQoEEDvfVOTk7w8/PTK1PeNkrvo6IyyvryzJo1C1qtVn2kpqYadfxERERkP5ysXYHb0el06NatG958800AQOfOnZGUlIQVK1ZgzJgxVq5d5VxdXeHq6mrtahAREVENYNMtZY0aNcKdd96pt6xt27Y4f/48AMDf3x8AkJ6erlcmPT1dXefv748rV67orS8qKkJGRoZemfK2UXofFZVR1hMRERFVh023lP3nP/9BcnKy3rK///4bQUFBAIDmzZvD398fW7duRadOnQCUDMZLSEjAU089BQAIDw9HZmYm9u/fj65duwIA/vjjD+h0OoSFhallXnrpJRQWFsLZ2RkAEBsbi+DgYPVKz/DwcGzduhVTp05V6xIbG4vw8HCDj0e5piIrK8vIM0FERETWonxvm/3aSLFhe/bsEScnJ3njjTfk5MmT8s0330idOnXk66+/Vsu89dZb4uPjIz///LMcPnxYBg8eLM2bN5fc3Fy1TP/+/aVz586SkJAgO3bskNatW0t0dLS6PjMzUxo2bCijRo2SpKQkWb16tdSpU0c++ugjtczOnTvFyclJ3n77bTl+/Li88sor4uzsLEeOHDH4eE6fPi0A+OCDDz744IOPGvg4ffp0NZPN7dn0lBgAsH79esyaNQsnT55E8+bNMW3aNIwfP15dLyJ45ZVXsHLlSmRmZqJHjx748MMP0aZNG7VMRkYGpkyZgl9//RUODg4YOnQolixZgrp166plDh8+jMmTJ2Pv3r2oX78+nn76acycOVOvLmvXrsXLL7+Ms2fPonXr1li4cCEefPBBg48lMzMTvr6+OH/+PLy9vatxVkiZXiQ1NZXTi1QDz6Pp8FyaDs+lafA8mo5Wq0XTpk1x/fp1+Pj4mG0/Nh/KahNLzXNiD3guTYPn0XR4Lk2H59I0eB5Nh/OUEREREdkRhjIiIiIiG8BQZkGurq545ZVXOHeZCfBcmgbPo+nwXJoOz6Vp8DyajqXOJceUEREREdkAtpQRERER2QCGMiIiIiIbwFBGREREZAMYyoiIiIhsAENZFc2fPx933XUXPD090aBBA0RFRZW5T2fv3r2h0Wj0HpMmTbrtdn/88UdERkaiXr160Gg0SExMNONRWJ85zmNhYSFmzpyJDh06wMPDAwEBARg9ejQuXbpk7sOxKnO9J+fOnYuQkBB4eHjA19cXERERSEhIMOehWJ25zmVpkyZNgkajwfvvv2/i2tsOc53Hxx9/vMxr+vfvb85DsTpzviePHz+OQYMGwdvbGx4eHrjrrrtw/vx5cx2K1ZnrXN5aXnksWrTI4LoxlFXRX3/9hcmTJ2P37t2IjY1FYWEhIiMjkZOTo1du/PjxuHz5svpYuHDhbbebk5ODHj16YMGCBeasvs0wx3m8efMmDhw4gNmzZ+PAgQP48ccfkZycjEGDBpn7cKzKXO/JNm3a4IMPPsCRI0ewY8cONGvWDJGRkbh69ao5D8eqzHUuFT/99BN2796NgIAAc1TfZpjzPPbv31/vNd9++625DsMmmOtcnj59Gj169EBISAj+/PNPHD58GLNnz4abm5s5D8eqzHUuS5e9fPkyPv30U2g0GgwdOtTwypn1zpp25MqVKwJA/vrrL3XZvffeK88++2yVtpeSkiIA5ODBg6apYA1h6vOo2LNnjwCQc+fOVbOGNYe5zqVWqxUA8vvvv1ezhjWHKc/lhQsXpHHjxpKUlCRBQUHy3nvvma6iNs5U53HMmDEyePBg01auhjHVuXz00UflscceM3HtahZzfVYOHjxY+vTpY9Rr2FJmIlqtFgDg5+ent/ybb75B/fr10b59e8yaNQs3b960RvVqDHOdR61WC41GY9Ybydoac5zLgoICrFy5Et7e3ggNDTVpfW2Zqc6lTqfDqFGjMH36dLRr185s9bVVpnxP/vnnn2jQoAGCg4Px1FNP4dq1a2aps60yxbnU6XTYsGED2rRpg379+qFBgwYICwvDunXrzFl1m2OOz8r09HRs2LAB48aNM64y1YqBJCIixcXFMmDAAPnPf/6jt/yjjz6SzZs3y+HDh+Xrr7+Wxo0by5AhQwzapj22lJnjPIqI5ObmSpcuXWTkyJGmrrLNMvW5/PXXX8XDw0M0Go0EBATInj17zFV1m2PKc/nmm2/K/fffLzqdTkTErlrKTHkev/32W/n555/l8OHD8tNPP0nbtm3lrrvukqKiInMegs0w1bm8fPmyAJA6derIu+++KwcPHpT58+eLRqORP//809yHYRPM9b2zYMEC8fX1ldzcXKPqw1BmApMmTZKgoCBJTU29bbmtW7cKADl16lSl27THUGaO81hQUCADBw6Uzp07i1arNVVVbZ6pz2V2dracPHlS4uPj5YknnpBmzZpJenq6Katss0x1Lvft2ycNGzaUixcvqsvsKZSZ4+9bcfr0abvqUjfVubx48aIAkOjoaL3lAwcOlBEjRpisvrbMXO/L4OBgmTJlitH1YSirpsmTJ0uTJk3kzJkzlZbNzs4WALJ58+ZKy9pbKDPHeSwoKJCoqCjp2LGj/PPPP6aqqs0z13uytFatWsmbb75Z1SrWGKY8l++9955oNBpxdHRUHwDEwcFBgoKCTFxz22KJ92T9+vVlxYoVVa1ijWHKc5mfny9OTk4yb948veUzZsyQe+65xyT1tWXmel/GxcUJAElMTDS6Tk7GdXaSQkTw9NNP46effsKff/6J5s2bV/oaZXqLRo0ambl2NYe5zmNhYSGGDx+OkydPYtu2bahXr56pqmyzLPme1Ol0yM/Pr0o1awRznMtRo0YhIiJCb1m/fv0watQojB07ttp1tkWWek9euHAB165dq9WfreY4ly4uLrjrrrvKTAfx999/IygoqNp1tlXmfl9+8skn6Nq1a9XG3Rod40hERJ566inx9vaWP//8Uy5fvqw+bt68KSIip06dktdee0327dsnKSkp8vPPP0uLFi2kV69eetsJDg6WH3/8UX1+7do1OXjwoGzYsEEAyOrVq+XgwYNy+fJlix6fpZjjPBYUFMigQYOkSZMmkpiYqLfd/Px8ix+jpZjjXGZnZ8usWbMkPj5ezp49K/v27ZOxY8eKq6urJCUlWfwYLcVcf9+3qu3dl+Y4jzdu3JD//e9/Eh8fLykpKfL7779Lly5dpHXr1pKXl2fxY7QUc70nf/zxR3F2dpaVK1fKyZMnZenSpeLo6Cjbt2+36PFZkjn/vrVardSpU0eWL19epboxlFURgHIfn332mYiInD9/Xnr16iV+fn7i6uoqrVq1kunTp5cZ11T6NSIin332WbnbfeWVVyx3cBZkjvOodP2W99i2bZtlD9CCzHEuc3NzZciQIRIQECAuLi7SqFEjGTRoUK0f6G+uv+9b1fZQZo7zePPmTYmMjJQ77rhDnJ2dJSgoSMaPHy9paWkWPjrLMud78pNPPpFWrVqJm5ubhIaGyrp16yx0VNZhznP50Ucfibu7u2RmZlapbpr/v2EiIiIisiLOU0ZERERkAxjKiIiIiGwAQxkRERGRDWAoIyIiIrIBDGVERERENoChjIiIiMgGMJQRERER2QCGMiIiIiIbwFBGREREZAMYyoiIiIhsAEMZEdm1tm3b4uOPP75tmWvXrqFBgwY4e/Zspdt7/fXXcffdd5uodsCIESPwzjvvmGx7RGS7GMqIyG7l5ubi5MmTCA0NvW25N954A4MHD0azZs0q3eahQ4fQqVMn01QQwMsvv4w33ngDWq3WZNskItvEUEZEdispKQkigvbt21dY5ubNm/jkk08wbtw4g7Zp6lDWvn17tGzZEl9//bXJtklEtomhjIjsTmJiIvr06YMePXpAp9OhadOmeP/998stu3HjRri6upbbJbl//3706tUL7u7u6Ny5MxISEnD69Gm9UHb+/HmMHDkSvr6+8PPzQ0xMDK5fv66uT0hIQI8ePeDu7o5OnTohLi4OGo0GSUlJapmBAwdi9erVJjt+IrJNDGVEZFdOnz6Ne++9F3369MGgQYPw8MMP4/nnn8dzzz2HxMTEMuW3b9+Orl27lll+4sQJ3Hfffbj33nuRlJSEl19+GVFRUQCAjh07AgBOnTqFrl27olWrVti9ezdiY2Nx6tQpTJ8+HUBJS13fvn3Ru3dvHDx4ELNnz8awYcPg6uqKkJAQdV/du3fHnj17kJ+fb/oTQkQ2QyMiYu1KEBFZyv33348mTZrgs88+Q1hYGB599FFMnToVvr6+eP311/H000/rlY+KikK9evXwySef6C3v27cvGjdujC+//FJdNmzYMBw5cgQnTpwAAERGRiI8PByvvvqqWuaHH37A9OnTcebMGfTp0wf+/v5YtWqVun7QoEG4cOECDhw4oC47fPgwQkNDcfbsWQQFBZn0fBCR7XCydgWIiCwlLS0Nf/zxB3bt2oXi4mIcOXIE8+fPh4ODAxwdHeHi4lLmNbm5uXBzc9Nbdu7cOfzxxx96wQkAnJ2d1a7Lc+fOITY2Fjt27NC7erK4uBiBgYE4d+4ctm3bptdNCQCurq5lLjxwd3cHUDK+jYhqL4YyIrIbu3fvhk6nQ6dOnZCcnIzc3Fx06tQJZ8+exfXr13HPPfeUeU39+vX1xoABJWPSnJyc0KFDB73lBw8exJgxYwCUDPj38/NDQkJCmW26u7tj3759cHFxQbt27fTWHT9+HE8++aTesoyMDADAHXfcYfxBE1GNwVBGRHajoKAAAJCXl4eDBw8iKCgIfn5+WLhwIdq3b18mZAFA586dy1z56ODgAJ1Oh4KCAjg5lXyMbty4ESdOnFBbypydnXHjxg0EBASgTp06ZbZ78OBBFBUVIS8vT22J27p1K44ePVqmpSwpKQlNmjRB/fr1q30OiMh2caA/EdmN8PBwODk54bXXXkNcXBxatGiBDz74AEuXLsXnn39e7mv69euHo0eP6rWWde3aFc7OzurYsF9++QXjx48HADWUhYWFwcvLC6NHj8ahQ4dw6tQpbN68GVOnTi13G7/++ismTJgAAGVC2fbt2xEZGWnak0FEtkeIiOzIl19+KY0aNRIA4uTkJGFhYRIXF3fb13Tv3l1WrFiht+yrr76SJk2aiJubm/Tq1UteeOEFadiwoV6ZhIQE6d27t3h5eYmnp6d06dJFFi9erK7/5ptvJDAwUDw8PGTIkCHy6quvSqtWrfS2kZubK97e3hIfH1/NIyciW8erL4nILvn5+eHzzz/HoEGDKi27YcMGTJ8+HUlJSXBwME8Hg06nQ+/evdGjRw+8+eab6vLly5fjp59+wm+//WaW/RKR7eCYMiKyOxcuXMD169dvO5N/aQMGDMDJkydx8eJFBAYGmqQOcXFxuHr1Kjp37ox//vkHixYtwrlz57Bu3Tq9cs7Ozli6dKlJ9klEto2hjIjszpEjR+Dh4YHmzZsb/BplLJippKen44UXXsDFixfRsGFDREREYM+ePfDz89Mrd+uVmERUe7H7koiIiMgG8OpLIiIiIhvAUEZERERkAxjKiIiIiGwAQxkRERGRDWAoIyIiIrIBDGVERERENoChjIiIiMgGMJQRERER2QCGMiIiIiIbwFBGREREZAP+H1Wd4lbZLz0HAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp.plot()" ] }, { "cell_type": "code", "execution_count": 16, "id": "48c98bf3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([25.164, 25.344, 25.568])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp.phi[exp.peaks]" ] }, { "cell_type": "markdown", "id": "a5db85e8", "metadata": {}, "source": [ "Our scan is very narrow, so it's perfectly possible to select the peaks manually. Use the function `pyddt.peak_picker()` for it. \n", "\n", "Also, you can delete peaks by using the function `pyddt.review()`: \n", "\n", "* To select a peak, stop the mouse over the maximum and press SPACE.\n", "\n", "* To unselect, stop the mouse over the maximum and press DEL.\n", "\n", "* Feel free to zoom in or out.\n", "\n", "* After finishing the selection, press ENTER. Then, close the figure (mouse or press q).\n" ] }, { "cell_type": "markdown", "id": "4d860f9e", "metadata": {}, "source": [ "#### 1.1.3 Defining the fitting regions" ] }, { "cell_type": "markdown", "id": "db3f778c", "metadata": {}, "source": [ "For reading the asymmetries, we fit a superposition of a symmetric peak with a linear slope. This way, it's necessary to define the fitting region for each selected peak. \n", "\n", "The function `pyddt.region_of_fit()` manually calculates the *full width at half maximum* $f$ for each peak, then defines the region of fit as \n", "\n", "$$\\phi_{0} \\pm nf$$\n", "\n", "where $\\phi_{0}$ is the center position and $n\\in \\mathcal{Z}$. By default, $n = 15$.\n", "\n", "The calculated regions are exhibited by using `flag = 1`." ] }, { "cell_type": "code", "execution_count": 32, "id": "3770f8c2", "metadata": {}, "outputs": [], "source": [ "exp.region_of_fit(flag=1)" ] }, { "cell_type": "markdown", "id": "b8345a21", "metadata": {}, "source": [ "![pyddt_t3_1](https://user-images.githubusercontent.com/106104347/187980762-c1e598c3-6f47-400f-b570-1c151c76f63b.png)" ] }, { "cell_type": "markdown", "id": "7e7fd756", "metadata": {}, "source": [ "#### 1.1.4 Indexing the multiple-diffraction cases" ] }, { "cell_type": "markdown", "id": "fb06642a", "metadata": {}, "source": [ "Now, let's index the MD peaks. To do this, use the `pyddt.indexer()` function. The secondary reflections are exhibited by using `flag = 1`." ] }, { "cell_type": "code", "execution_count": 33, "id": "c0e56bbe", "metadata": {}, "outputs": [], "source": [ "exp.indexer('ce3.in', [1, 1, 0], 50, flag=1)" ] }, { "cell_type": "markdown", "id": "3116dc4e", "metadata": {}, "source": [ "![pyddt_t3_2](https://user-images.githubusercontent.com/106104347/187985771-3f126b90-6c8a-46ff-8315-3396608281c8.png)" ] }, { "cell_type": "markdown", "id": "462eb83f", "metadata": {}, "source": [ "`exp.indexer()` arguments:\n", "\n", "* Structural model (generated in the last tutorial). \n", "* Reference direction for the azimuthal rotation\n", "* Minimum cutoff for the strength of excitation. \n", "\n", "The red color of the 4-beam peaks indicates the *in-out* geometry of excitation, while blue stands for out-in. \n", "\n", "It's also possible directly index the MD peaks by visualizing $\\omega \\times \\phi$ graphs. The secondary reflections are shown as hover text by mouse motions." ] }, { "cell_type": "code", "execution_count": null, "id": "2da621ca", "metadata": {}, "outputs": [], "source": [ "exp.BC_plot('ce3.in', [1, 1, 0], 50)" ] }, { "cell_type": "markdown", "id": "b91be2ca", "metadata": {}, "source": [ "You can also access the indexation by calling the `index` attribute, where $\\pm 1$ stands for the excitation geometry." ] }, { "cell_type": "code", "execution_count": 24, "id": "5e2bbe60", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([['1', '4 1 3/ 4 1 -1'],\n", " ['-1', '-3 4 1'],\n", " ['1', '4 2 4/ 4 2 -2']], dtype='" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp2.plot()" ] }, { "cell_type": "markdown", "id": "1d34b7bd", "metadata": {}, "source": [ "Please, note how the asymmetries are subtle, and a visual asymmetry reading is tricky." ] }, { "cell_type": "markdown", "id": "7bc320dd", "metadata": {}, "source": [ "#### 1.2.2 Selecting the MD peaks" ] }, { "cell_type": "code", "execution_count": 44, "id": "9df7a661", "metadata": {}, "outputs": [], "source": [ "exp2.peak_finder(0.1)" ] }, { "cell_type": "code", "execution_count": 45, "id": "203b55e1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG0CAYAAAAvjxMUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABj/klEQVR4nO3deVhT19o28DtMYTIoICCCIwrigIqKOFep1FJbq69a62mt2tp60KPST6tvrW3tYGtHW4ceOznVOpwebasUi1i1VZwQEBVxQkEhoCKJIpPJ+v7gzS6RKWBCCNy/68ql2Xtl51kJkCfPWnttmRBCgIiIiIiqZWXuAIiIiIgsAZMmIiIiIgMwaSIiIiIyAJMmIiIiIgMwaSIiIiIyAJMmIiIiIgMwaSIiIiIygI25A2gstFotsrKy0KxZM8hkMnOHQ0RERAYQQuDOnTvw9vaGlVX1tSQmTUaSlZUFX19fc4dBREREdZCZmQkfH59q2zBpMpJmzZoBKHvRFQqFmaMhIiIiQ6jVavj6+kqf49Vh0mQkuiE5hULBpImIiMjCGDK1hhPBiYiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIyOhOnACGDy/7t7Fg0kRERERGt2ED8McfwMaN5o7EeHjBXiIiIjKKq1eBmzcBmQzYskUAkGHLFmDKFEAIwN0daNvW3FHWHZMmIiIiMop27Spuu3FDIDhYJt0Xov7iMTYOzxEREZFRbNoE2EjlmLJESYiyf21syvZbMlaaiIiIyCgmTwa6dAGCgyvuO3oU6N27/mMyJlaaiIiIyAQ0AACZzILH4x7ApImIiIiMxsMDcHe/DyABwMvo0uUevLzKtls6Jk1ERERkND4+wG+/pQIIAbAW33yTgitXyrZbOiZNREREZFQlJXek/9+/Xwq53IzBGBGTJiIiIjKqu3fvSv8vKSkxYyTGxaSJiIiIjKqgoED6f2lpqRkjMS4mTURERGRUrDQRERERGaB80sRKExEREVEVWGkiIiIiMgArTUREREQGYNJEREREZAAOzxEREREZgJUmIiIiIgOw0mQCGo0Gb7zxBtq3bw8HBwd07NgR77zzDoT4+4rIQggsWbIErVq1goODA8LCwnDhwgW94+Tl5WHy5MlQKBRo3rw5pk+frveGAcCpU6cwePBg2Nvbw9fXF8uXL68Qz/bt2xEQEAB7e3t0794d0dHRpuk4ERFRI8ZKkwl8+OGHWLNmDVauXInU1FR8+OGHWL58Ob788kupzfLly/HFF1/gq6++wtGjR+Hk5ITw8HAUFRVJbSZPnowzZ84gNjYWu3btwsGDBzFjxgxpv1qtxsiRI9G2bVskJCTgo48+wltvvYW1a9dKbQ4fPoxJkyZh+vTpSExMxJgxYzBmzBicPn26fl4MIiKiRqKxVpogzCgiIkJMmzZNb9vYsWPF5MmThRBCaLVa4eXlJT766CNpf35+vpDL5eLHH38UQghx9uxZAUAcP35cavPbb78JmUwmrl+/LoQQYvXq1aJFixaiuLhYavPaa68Jf39/6f6ECRNERESEXiwhISHi5ZdfNqgvKpVKABAqlcqg9kRERI1VYGCgACAAiNdff93c4VSrNp/fZq00DRgwAHFxcTh//jwAIDk5GX/99RdGjRoFAEhPT4dSqURYWJj0GBcXF4SEhCA+Ph4AEB8fj+bNm6NPnz5Sm7CwMFhZWeHo0aNSmyFDhsDOzk5qEx4ejrS0NNy+fVtqU/55dG10z/Og4uJiqNVqvRsRERE13kqTjTmffOHChVCr1QgICIC1tTU0Gg3ee+89TJ48GQCgVCoBAJ6ennqP8/T0lPYplUp4eHjo7bexsYGrq6tem/bt21c4hm5fixYtoFQqq32eBy1btgxvv/12XbpNRETUqHFOkwls27YNP/zwAzZv3oyTJ09i/fr1+Pjjj7F+/XpzhmWQRYsWQaVSSbfMzExzh0RERNQgFBQUSP9vTEmTWStN8+fPx8KFC/HMM88AALp3746rV69i2bJlmDJlCry8vAAAOTk5aNWqlfS4nJwc9OzZEwDg5eWF3NxcvePev38feXl50uO9vLyQk5Oj10Z3v6Y2uv0PksvlkMvldek2ERFRo1VaWori4mLpfmManjNrpenevXuwstIPwdraGlqtFgDQvn17eHl5IS4uTtqvVqtx9OhRhIaGAgBCQ0ORn5+PhIQEqc2+ffug1WoREhIitTl48KBethsbGwt/f3+0aNFCalP+eXRtdM9DRERENStfZQIaV6XJrEnT6NGj8d5772H37t24cuUKduzYgU8//RRPP/00AEAmk2Hu3Ll499138csvvyAlJQXPP/88vL29MWbMGABAly5d8Nhjj+Gll17CsWPHcOjQIcyaNQvPPPMMvL29AQDPPvss7OzsMH36dJw5cwZbt27FihUrEBUVJcUyZ84cxMTE4JNPPsG5c+fw1ltv4cSJE5g1a1a9vy5ERESW6sF1EhtTpcmsSw6o1WoxZ84c0aZNG2Fvby86dOggXn/9db2lAbRarXjjjTeEp6enkMvlYsSIESItLU3vOLdu3RKTJk0Szs7OQqFQiKlTp4o7d+7otUlOThaDBg0ScrlctG7dWnzwwQcV4tm2bZvo3LmzsLOzE127dhW7d+82uC9ccoCIiEiI1NRUabkBAGL8+PHmDqlatfn8lglRbvltqjO1Wg0XFxeoVCooFApzh0NERGQWJ06cQN++faX7Tz31FHbu3Gm+gGpQm89vXnuOiIiIjObB4TnOaSIiIiKqRGOe08SkiYiIiIyGlSYiIiIiA7DSRERERGQAXdKkm1TNShMRERFRJXRJk27xaCZNRERERJV4MGni8BwRERFRJVhpIiIiIjKA7tpzrq6uAFhpIiIiIqoUK01EREREBtAlTaw0EREREVWDlSYiIiIiA7DSRERERGQAVpqIiIiIDPBg0qTRaKDVas0ZktEwaSIiIiKjeTBpAhpPtYlJExERERmFVquV1mli0kRERERUhcLCQgghAPw9ERxoPJPBmTQRERGRUeiG5gBAoVBI/2eliYiIiKgcXdLk5OQEKysr2NnZAWCliYiIiEiPbj6To6MjAMDW1hYAK01EREREeu7fvw8AUoWJlSYiIiKiSuiSJhsbGwCsNBERERFV6sGkiZUmIiIiokqw0kRERERkACZNRERERAbg8BwRERGRAVhpIiIiIjKALjlipYmIiIioGqw0ERERERmAc5pMqF27dpDJZBVukZGRAICioiJERkbCzc0Nzs7OGDduHHJycvSOkZGRgYiICDg6OsLDwwPz58+X3jSd/fv3o3fv3pDL5fDz88O6desqxLJq1Sq0a9cO9vb2CAkJwbFjx0zWbyIiosZI9/mrqzCx0mREx48fR3Z2tnSLjY0FAIwfPx4AMG/ePPz666/Yvn07Dhw4gKysLIwdO1Z6vEajQUREBEpKSnD48GGsX78e69atw5IlS6Q26enpiIiIwCOPPIKkpCTMnTsXL774Ivbs2SO12bp1K6KiovDmm2/i5MmTCAoKQnh4OHJzc+vplSAiIrJ8jb3SBNGAzJkzR3Ts2FFotVqRn58vbG1txfbt26X9qampAoCIj48XQggRHR0trKyshFKplNqsWbNGKBQKUVxcLIQQYsGCBaJr1656zzNx4kQRHh4u3e/Xr5+IjIyU7ms0GuHt7S2WLVtmcOwqlUoAECqVqnadJiIiaiS++eYbAUA88cQTQgghxo4dKwCI1atXmzmyqtXm87vBzGkqKSnBpk2bMG3aNMhkMiQkJKC0tBRhYWFSm4CAALRp0wbx8fEAgPj4eHTv3h2enp5Sm/DwcKjVapw5c0ZqU/4Yuja6Y5SUlCAhIUGvjZWVFcLCwqQ2lSkuLoZarda7ERERNWVVVZo4PGdkO3fuRH5+Pl544QUAgFKphJ2dHZo3b67XztPTE0qlUmpTPmHS7dftq66NWq1GYWEhbt68CY1GU2kb3TEqs2zZMri4uEg3X1/fWveZiIioManq7LnGMjzXYJKmb7/9FqNGjYK3t7e5QzHIokWLoFKppFtmZqa5QyIiIjKrxr7kgI25AwCAq1evYu/evfjvf/8rbfPy8kJJSQny8/P1qk05OTnw8vKS2jx4lpvu7LrybR484y4nJwcKhQIODg6wtraGtbV1pW10x6iMXC6HXC6vfWeJiIgaqcY+EbxBVJq+//57eHh4ICIiQtoWHBwMW1tbxMXFSdvS0tKQkZGB0NBQAEBoaChSUlL0znKLjY2FQqFAYGCg1Kb8MXRtdMews7NDcHCwXhutVou4uDipDREREdWMlSYT02q1+P777zFlyhTpRQYAFxcXTJ8+HVFRUXB1dYVCocDs2bMRGhqK/v37AwBGjhyJwMBAPPfcc1i+fDmUSiUWL16MyMhIqQr0yiuvYOXKlViwYAGmTZuGffv2Ydu2bdi9e7f0XFFRUZgyZQr69OmDfv364fPPP0dBQQGmTp1avy8GERGRBWvslSazJ0179+5FRkYGpk2bVmHfZ599BisrK4wbNw7FxcUIDw/H6tWrpf3W1tbYtWsXZs6cidDQUDg5OWHKlClYunSp1KZ9+/bYvXs35s2bhxUrVsDHxwfffPMNwsPDpTYTJ07EjRs3sGTJEiiVSvTs2RMxMTEVJocTERFR1R689hwrTUY2cuRICCEq3Wdvb49Vq1Zh1apVVT6+bdu2iI6OrvY5hg0bhsTExGrbzJo1C7Nmzao5YCIiIqpUY680NYg5TURERGT5eBkVIiIiIgOw0kRERERkgMZ+9hyTJiIiIjIKXkaFiIiIyAC8jAoRERGRATg8R0RERGQATgQnIiIiMgArTUREREQGYKWJiIiIyACN/TIqTJqIiIjIKFhpIiIiIjIAL6NCREREZAAubklERERkAC5uSURERGQALjlAREREZABOBCciIiIyACtNRERERAZgpYmIiIjIAKw0ERERERmgqkqTRqOBVqs1W1zGwqSJiIiIjKKqShPQOKpNTJqIiIjIKHSJkS5Z0lWayu+zZEyaiIiIyCiqqzQ1hsngTJqIiIjIKB5MmqytrSGTyQCw0kREREQkeTBpkslkjepSKkyaiIiIyCgeTJqAxrXsAJMmIiIiMorKkqbGtMAlkyYiIiIyClaaiIiIiAzAShMRERGRAVhpIiIiIqqBVquFEAIAK00mc/36dfzjH/+Am5sbHBwc0L17d5w4cULaL4TAkiVL0KpVKzg4OCAsLAwXLlzQO0ZeXh4mT54MhUKB5s2bY/r06bh7965em1OnTmHw4MGwt7eHr68vli9fXiGW7du3IyAgAPb29ujevTuio6NN02kiIqJGRldlAlhpMonbt29j4MCBsLW1xW+//YazZ8/ik08+QYsWLaQ2y5cvxxdffIGvvvoKR48ehZOTE8LDw1FUVCS1mTx5Ms6cOYPY2Fjs2rULBw8exIwZM6T9arUaI0eORNu2bZGQkICPPvoIb731FtauXSu1OXz4MCZNmoTp06cjMTERY8aMwZgxY3D69On6eTGIiIgsWPmkqfxK4LpKU2NImiDM6LXXXhODBg2qcr9WqxVeXl7io48+krbl5+cLuVwufvzxRyGEEGfPnhUAxPHjx6U2v/32m5DJZOL69etCCCFWr14tWrRoIYqLi/We29/fX7o/YcIEERERoff8ISEh4uWXXzaoLyqVSgAQKpXKoPZERESNSX5+vgAgAIiioiJpe0hIiAAgfv75ZzNGV7XafH6btdL0yy+/oE+fPhg/fjw8PDzQq1cvfP3119L+9PR0KJVKhIWFSdtcXFwQEhKC+Ph4AEB8fDyaN2+OPn36SG3CwsJgZWWFo0ePSm2GDBmid+HA8PBwpKWl4fbt21Kb8s+ja6N7ngcVFxdDrVbr3YiIiJqqqobnOKfJSC5fvow1a9agU6dO2LNnD2bOnIl//etfWL9+PQBAqVQCADw9PfUe5+npKe1TKpXw8PDQ229jYwNXV1e9NpUdo/xzVNVGt/9By5Ytg4uLi3Tz9fWtdf+JiIgai/JJk5XV3+mFbqiu/H5LZdakSavVonfv3nj//ffRq1cvzJgxAy+99BK++uorc4ZlkEWLFkGlUkm3zMxMc4dERERkNuWXG9BdpFd3H2gcc5rMmjS1atUKgYGBetu6dOmCjIwMAICXlxcAICcnR69NTk6OtM/Lywu5ubl6++/fv4+8vDy9NpUdo/xzVNVGt/9BcrkcCoVC70ZERNRUVbZGE8Cz54xm4MCBSEtL09t2/vx5tG3bFgDQvn17eHl5IS4uTtqvVqtx9OhRhIaGAgBCQ0ORn5+PhIQEqc2+ffug1WoREhIitTl48KDeGxYbGwt/f3/pTL3Q0FC959G10T0PERERVY1Jk4nNmzcPR44cwfvvv4+LFy9i8+bNWLt2LSIjIwEAMpkMc+fOxbvvvotffvkFKSkpeP755+Ht7Y0xY8YAKKtMPfbYY3jppZdw7NgxHDp0CLNmzcIzzzwDb29vAMCzzz4LOzs7TJ8+HWfOnMHWrVuxYsUKREVFSbHMmTMHMTEx+OSTT3Du3Dm89dZbOHHiBGbNmlXvrwsREZGlaQpJk1mXHBBCiF9//VV069ZNyOVyERAQINauXau3X6vVijfeeEN4enoKuVwuRowYIdLS0vTa3Lp1S0yaNEk4OzsLhUIhpk6dKu7cuaPXJjk5WQwaNEjI5XLRunVr8cEHH1SIZdu2baJz587Czs5OdO3aVezevdvgfnDJASIiaspOnz4tAAh3d3e97ZMmTRIAxGeffWaewGpQm89vmRD/t+Y5PRS1Wg0XFxeoVCrObyIioiYnOTkZPXv2hJeXF7Kzs6XtU6ZMwYYNG7B8+XLMnz/fjBFWrjaf32a/jAoRERFZvqYwPMekiYiIiB6aLmkqfwmV8veZNBERERGh6kqT7j4XtyQiIiLC35UkDs8RERERVYNzmoiIiIgMwKSJiIiIyACc00RERERkAFaaiIiIiAzApImIiIjIAEyaiIiIiAzAOU1EREREBmCliYiIiMgAvIwKERERkQFYaSIiIiIyAOc0ERERERmA154jIiIiMgCH54iIiIgMwKSJiIiIyACc00RERERkAFaaiIiIiAzApImIiIjIAEyaiIiIiAzAOU1EREREBuBlVIiIiIgMwOE5IiIiIgMwaSIiIiIyAOc0ERERERmA154jIiIiMoAhw3NCiHqPy5iYNBEREdFDqylpAgCNRlOvMRkbkyYiIiJ6aDXNaSrfxlKZNWl66623IJPJ9G4BAQHS/qKiIkRGRsLNzQ3Ozs4YN24ccnJy9I6RkZGBiIgIODo6wsPDA/Pnz6/wpuzfvx+9e/eGXC6Hn58f1q1bVyGWVatWoV27drC3t0dISAiOHTtmkj4TERE1RoZUmix9XpPZK01du3ZFdna2dPvrr7+kffPmzcOvv/6K7du348CBA8jKysLYsWOl/RqNBhERESgpKcHhw4exfv16rFu3DkuWLJHapKenIyIiAo888giSkpIwd+5cvPjii9izZ4/UZuvWrYiKisKbb76JkydPIigoCOHh4cjNza2fF4GIiMjCNYWkCcKM3nzzTREUFFTpvvz8fGFrayu2b98ubUtNTRUARHx8vBBCiOjoaGFlZSWUSqXUZs2aNUKhUIji4mIhhBALFiwQXbt21Tv2xIkTRXh4uHS/X79+IjIyUrqv0WiEt7e3WLZsWZWxFxUVCZVKJd0yMzMFAKFSqQx/AYiIiBqJRx99VAAQGzdu1Nuu1WoFAAFA7/O6oVCpVAZ/fpu90nThwgV4e3ujQ4cOmDx5MjIyMgAACQkJKC0tRVhYmNQ2ICAAbdq0QXx8PAAgPj4e3bt3h6enp9QmPDwcarUaZ86ckdqUP4auje4YJSUlSEhI0GtjZWWFsLAwqU1lli1bBhcXF+nm6+v7kK8EERGR5arqMioymazRrNVk1qQpJCQE69atQ0xMDNasWYP09HQMHjwYd+7cgVKphJ2dHZo3b673GE9PTyiVSgCAUqnUS5h0+3X7qmujVqtRWFiImzdvQqPRVNpGd4zKLFq0CCqVSrplZmbW6TUgIiJqDKoangMaz1pNFXtWg2nTpmHIkCF44YUXAABXr17F2bNnMWDAALi4uNTqWKNGjZL+36NHD4SEhKBt27bYtm0bHBwcahtavZLL5ZDL5eYOg4iIqEGoKWkqLCy0+KSp1pWm6Oho6Qy3/Px8BAcHY8yYMQgMDERaWtpDBdO8eXN07twZFy9ehJeXF0pKSpCfn6/XJicnB15eXgAALy+vCmfT6e7X1EahUMDBwQHu7u6wtrautI3uGERERFS9plBpqnXSpFKp0Lp1awDATz/9BC8vL6jVakycOBGLFi16qGDu3r2LS5cuoVWrVggODoatrS3i4uKk/WlpacjIyEBoaCgAIDQ0FCkpKXpnucXGxkKhUCAwMFBqU/4Yuja6Y9jZ2SE4OFivjVarRVxcnNSGiIiIqlfVZVTKb2tyc5p8fX2Rnp4OANi+fTteeOEFyOVyvPLKKzh06FCtjvX//t//w4EDB3DlyhUcPnwYTz/9NKytrTFp0iS4uLhg+vTpiIqKwh9//IGEhARMnToVoaGh6N+/PwBg5MiRCAwMxHPPPYfk5GTs2bMHixcvRmRkpDR09sorr+Dy5ctYsGABzp07h9WrV2Pbtm2YN2+eFEdUVBS+/vprrF+/HqmpqZg5cyYKCgowderU2r48RERETVJTqDTVek7TCy+8gH/9618YPXo04uLisHLlSgBl1Zm7d+/W6ljXrl3DpEmTcOvWLbRs2RKDBg3CkSNH0LJlSwDAZ599BisrK4wbNw7FxcUIDw/H6tWrpcdbW1tj165dmDlzJkJDQ+Hk5IQpU6Zg6dKlUpv27dtj9+7dmDdvHlasWAEfHx988803CA8Pl9pMnDgRN27cwJIlS6BUKtGzZ0/ExMRUmBxORERElWsKSZNMiNpdPU8Igffffx+///47nnzySbz66qsAgI0bN+L9999HamqqSQJt6NRqNVxcXKBSqaBQKMwdDhERUb3q1KkTLl68iL/++gsDBw7U2+fv74/z58/j4MGDGDx4sJkirFxtPr9rXWmSyWR4/fXX8frrr+ttVyqVePbZZ2t7OCIiImoEmkKlqdZJ04ABAxATE1MhG5s/f77RgiIiIiLLUl3S1GQngh85cgRFRUUVtqvVarz22mtGCYqIiIgsS1UrgpffZumVJoOTpv/5n//BBx98AJlMVumFbAsKCvDxxx8bNTgiIiKyDByeK6dNmzbYtWsXhBAICgqCm5sbgoKCEBQUhJ49eyItLQ2tWrUyZaxERETUQDFpKufTTz8FULYY5KFDh5CVlYXExEQkJSVhx44d0Gq1WL58uckCJSIiooarKcxpqvVE8IKCAtjY2EAmk+Gpp54yRUxERERkYVhpqkRlE7yIiIioaWPSVInjx49j4cKFuHHjBvz8/NCzZ0/p1qZNG1PESERERA2YEKJJJE21XnLgueeeg7W1NWbMmIH27dvjwIEDmDp1Ktq1awc3NzdTxEhEREQNmEajkf7POU3lZGZmYvfu3ejYsaPe9qtXryIpKclYcREREZGFKJ8MNeZKU62TptDQUFy/fr1C0tS2bVu0bdvWaIERERGRZWgqSVOth+fmzZuHpUuXIi8vzxTxEBERkYVpKklTrStNo0ePhkwmQ+fOnfHUU08hNDQUvXr1Qvfu3WFnZ2eKGImIiKgBqylparJzmi5cuIBTp04hOTkZycnJeP/993HlyhXY2trC398fp06dMkWcRERE1EDpkiErKytYWVUcxGqylaYWLVrg6aefxtNPPy1tU6vVSE5OZsJERETUBFW33ADQhJMmd3d3tG7dWu+6c0FBQRg0aBAGDx5sihiJiIioAWPSVIWUlBQkJSUhOTkZx48fx9q1a5GXlwd7e3t0794dR44cMUWcRERE1EDVlDQ12TlNXbt2RdeuXTF58mQAZauAxsTEYPbs2Rg+fLjRAyQiIqKGralUmmq95MCDZDIZRo0ahU2bNkGpVBojJiIiIrIgTJpqqX///vjjjz+MdTgiIiKyELpkqLEnTbUennN2dkb37t0RFBSEHj16ICgoCAEBATh+/Dju3LljihiJiIioAeOcpir85z//QVJSEpKSkrBixQpcunQJQgjIZDK88847poiRiIiIGrCmMjxX66Tpsccew2OPPSbdv3fvHtLT0+Hm5gYvLy+jBkdEREQNH5MmAzk6OqJr167GiIWIiIgskC5p0iVHD2osSVOtJ4Lfv38f7733HkJDQ9G7d29MmTIFsbGxpoiNiIiILEBTmdNU66Rp4cKFWL16NUaMGIExY8aguLgYTzzxBKZOnQohhCliJCIiogaMw3NV2Lx5M7Zs2YIhQ4ZI29LT0/HEE0/g448/xvz5840aIBERETVsTSVpqnWlqaCgAD4+Pnrb2rdvjy+//BJr1641WmBERERkGZg0VWHQoEFYv359he3t27dHVlaWUYIiIiIiy8E5TVX48MMP8fnnn+Nf//oXLly4AKAsc/zyyy8RGBhY50A++OADyGQyzJ07V9pWVFSEyMhIuLm5wdnZGePGjUNOTo7e4zIyMhAREQFHR0d4eHhg/vz5Fd6U/fv3o3fv3pDL5fDz88O6desqPP+qVavQrl072NvbIyQkBMeOHatzX4iIiJoSVpqq0K1bN+zfvx/x8fHw9/eHvb09HB0dsXHjRnz++ed1CuL48eP497//jR49euhtnzdvHn799Vds374dBw4cQFZWFsaOHSvt12g0iIiIQElJCQ4fPoz169dj3bp1WLJkidQmPT0dEREReOSRR5CUlIS5c+fixRdfxJ49e6Q2W7duRVRUFN58802cPHkSQUFBCA8PR25ubp36Q0RE1JQ0laQJopYOHTokUlJShBBCpKamip9++kn8/vvvQqVS1fZQQggh7ty5Izp16iRiY2PF0KFDxZw5c4QQQuTn5wtbW1uxfft2qW1qaqoAIOLj44UQQkRHRwsrKyuhVCqlNmvWrBEKhUIUFxcLIYRYsGCB6Nq1q95zTpw4UYSHh0v3+/XrJyIjI6X7Go1GeHt7i2XLlhncD5VKJQDU+XUgIiKyVN9++60AICIiIird/+effwoAolOnTvUcWc1q8/ld60pTZGQkjh49CgAICAjA2LFj8eijj+LGjRt1uvZcZGQkIiIiEBYWprc9ISEBpaWletsDAgLQpk0bxMfHAwDi4+PRvXt3eHp6Sm3Cw8OhVqtx5swZqc2Dxw4PD5eOUVJSgoSEBL02VlZWCAsLk9pUpri4GGq1Wu9GRETUFJWUlACoenHLJjunKS0tDcOGDauwfe/evZg0aVKtjrVlyxacPHkSy5Ytq7BPqVTCzs4OzZs319vu6ekJpVIptSmfMOn26/ZV10atVqOwsBA3b96ERqOptI3uGJVZtmwZXFxcpJuvr69hnSYiImpkiouLAQD29vaV7m8sw3O1TpoUCgVu375dYfvgwYNx5MgRg4+TmZmJOXPm4IcffqjyRW7IFi1aBJVKJd0yMzPNHRIREZFZ6JImuVxe6f4mmzQ99thj+PjjjyseyMpKKs8ZIiEhAbm5uejduzdsbGxgY2ODAwcO4IsvvoCNjQ08PT1RUlKC/Px8vcfl5ORIFwb28vKqcDad7n5NbRQKBRwcHODu7g5ra+tK21R3AWK5XA6FQqF3IyIiaoqYNFXhnXfewYEDBzBu3DikpKQAKFsa4MMPP6xw9lt1RowYgZSUFCQlJUm3Pn36YPLkydL/bW1tERcXJz0mLS0NGRkZCA0NBQCEhoYiJSVF7yy32NhYKBQKafmD0NBQvWPo2uiOYWdnh+DgYL02Wq0WcXFxUhsiIiKqWlFREYCqh+cay5ymWl9GxdfXF0eOHMHMmTMRFBQEuVyO+/fvw8XFBb/++qvBx2nWrBm6deumt83JyQlubm7S9unTpyMqKgqurq5QKBSYPXs2QkND0b9/fwDAyJEjERgYiOeeew7Lly+HUqnE4sWLERkZKWW7r7zyClauXIkFCxZg2rRp2LdvH7Zt24bdu3dLzxsVFYUpU6agT58+6NevHz7//HMUFBRg6tSptX15iIiImpymUmmqddIEAG3btkV0dDQyMjKQlJQEW1tbhISEwNXV1ajBffbZZ7CyssK4ceNQXFyM8PBwrF69WtpvbW2NXbt2YebMmQgNDYWTkxOmTJmCpUuXSm3at2+P3bt3Y968eVixYgV8fHzwzTffIDw8XGozceJE3LhxA0uWLIFSqUTPnj0RExNTYXI4ERERVdRUkiaZEEKYO4jGQK1Ww8XFBSqVivObiIioSXnppZfwzTff4N1338Xrr79eYX9ubq5UiNBqtZDJZPUdYpVq8/ld6zlNREREROXVVGkqv1K4RqOpl5hMgUkTERERPRRDh+cAyx6iY9JERERED6Wms+eYNBERERGBlSYiIiIig9SUNFlZ/Z1uWPJaTUyaiIiI6KHohueqSppkMlmjWHaASRMRERE9lJou2As0jrWamDQRERHRQ6lpeA5g0kRERERkUNKkW6uJSRMRERE1WTUtOQD8XWniRHAiIiJqsjg8R0RERGQAJk1EREREBjBkeI5zmoiIiKhJ02q1UiJkSKWJc5qIiIioSSopKZH+z+E5IiIioirohuYAJk1EREREVdJNAgcAOzu7KtsxaSIiIqImrfyZczKZrMp2uongnNNERERETZIhyw0ArDQRERFRE2fIcgMAkyYiIiJq4lhpIiIiIjKAoUkT5zQRERFRk8bhOSIiIiIDcHiOiIiIyABMmoiIiIgMoBue45wmIiIiomroKk2c00RERERUDQ7PERERERmASRMRERGRAQxdckB3Md/yF/i1NEyaiIiIqM4MrTQ5OjoCAAoLC00ek6mYNWlas2YNevToAYVCAYVCgdDQUPz222/S/qKiIkRGRsLNzQ3Ozs4YN24ccnJy9I6RkZGBiIgIODo6wsPDA/Pnz68wM3///v3o3bs35HI5/Pz8sG7dugqxrFq1Cu3atYO9vT1CQkJw7Ngxk/SZiIioMalt0nTv3j2Tx2QqZk2afHx88MEHHyAhIQEnTpzA8OHD8dRTT+HMmTMAgHnz5uHXX3/F9u3bceDAAWRlZWHs2LHS4zUaDSIiIlBSUoLDhw9j/fr1WLduHZYsWSK1SU9PR0REBB555BEkJSVh7ty5ePHFF7Fnzx6pzdatWxEVFYU333wTJ0+eRFBQEMLDw5Gbm1t/LwYREZEFMnR4rjFUmiAamBYtWohvvvlG5OfnC1tbW7F9+3ZpX2pqqgAg4uPjhRBCREdHCysrK6FUKqU2a9asEQqFQhQXFwshhFiwYIHo2rWr3nNMnDhRhIeHS/f79esnIiMjpfsajUZ4e3uLZcuWGRy3SqUSAIRKpapdh4mIiCzYrFmzBACxePHiatutX79eABCPPfZYPUVmmNp8fjeYOU0ajQZbtmxBQUEBQkNDkZCQgNLSUoSFhUltAgIC0KZNG8THxwMA4uPj0b17d3h6ekptwsPDoVarpWpVfHy83jF0bXTHKCkpQUJCgl4bKysrhIWFSW0qU1xcDLVarXcjIiJqajg8V49SUlLg7OwMuVyOV155BTt27EBgYCCUSiXs7OzQvHlzvfaenp5QKpUAAKVSqZcw6fbr9lXXRq1Wo7CwEDdv3oRGo6m0je4YlVm2bBlcXFykm6+vb536T0REZMkMXRGcSZMR+Pv7IykpCUePHsXMmTMxZcoUnD171txh1WjRokVQqVTSLTMz09whERER1TtDVwRvDEmTjbkDsLOzg5+fHwAgODgYx48fx4oVKzBx4kSUlJQgPz9fr9qUk5MDLy8vAICXl1eFs9x0Z9eVb/PgGXc5OTlQKBRwcHCAtbU1rK2tK22jO0Zl5HJ5jVk1ERFRY8fhOTPSarUoLi5GcHAwbG1tERcXJ+1LS0tDRkYGQkNDAQChoaFISUnRO8stNjYWCoUCgYGBUpvyx9C10R3Dzs4OwcHBem20Wi3i4uKkNkRERFQ5Q4fnHBwcAFh20mTWStOiRYswatQotGnTBnfu3MHmzZuxf/9+7NmzBy4uLpg+fTqioqLg6uoKhUKB2bNnIzQ0FP379wcAjBw5EoGBgXjuueewfPlyKJVKLF68GJGRkdKb98orr2DlypVYsGABpk2bhn379mHbtm3YvXu3FEdUVBSmTJmCPn36oF+/fvj8889RUFCAqVOnmuV1ISIishQcnqsnubm5eP7555GdnQ0XFxf06NEDe/bswaOPPgoA+Oyzz2BlZYVx48ahuLgY4eHhWL16tfR4a2tr7Nq1CzNnzkRoaCicnJwwZcoULF26VGrTvn177N69G/PmzcOKFSvg4+ODb775BuHh4VKbiRMn4saNG1iyZAmUSiV69uyJmJiYCpPDiYiISF9dhueEEJDJZCaPzdhkQghh7iAaA7VaDRcXF6hUKigUCnOHQ0REVC+Cg4Nx8uRJREdHY9SoUVW2U6lU0hzloqKiBjMvuDaf3w1uThMRERFZjtquCA5Y7hAdkyYiIiKqM0OH52xtbWFjUzYriEkTERERNTmGJk2A5U8GZ9JEREREdWbokgMAkyYiIiJqwgxdcgBg0kRERERNGIfniIiIiGqg1WpRUlICgEkTERERUZV0CRPA4TkiIiKiKumG5gBWmoiIiIiqVD5psrOzq7E9kyYiIiJqksovN2DIteSYNBEREVGTVJsz5wAmTURERNRE1TVpKiwsNFlMpsSkiYiIiOqkNquBA6w0ERERURNVm9XAASZNRERE1ETVdnjOwcEBAJMmIiIiamI4PEdERERkAA7PERERERmASw4QVeLECWD48LJ/iYiIACZNRJXasAH44w9g40ZzR0JERA2Fbk5TUxmeszF3ANRwXb0K3LwJ3L9fio0bBQA7bNkCTJkCCAG4uwNt25o7SiIiMpemVmli0kRVatdO9z9bAFoAwI0bQHDw322EqOegiIiowWhqSROH56hKmzYBNlJaXfajokuSbGzK9hMRUdPV1JYcYKWJqjR5MtCli35lSefoUaB37/qPiYiIGo66LjlQWFgIrVYLKyvLqt1YVrRU74Q0/qYBAFjYzzcREZlQXYfngL+rVJaEH4FULRubPADZABLQosUiBAcDXl6Ah4e5IyMiInOr7fCc7jIqgGUO0XF4jqp17955AMMAlKCgwA5HjryP0lIZDPz9ICKiRqy2lSZra2vI5XIUFxdbZNLEShNV6+LFiwBKAAAlJSW4c0fNhImIiAAAd+/eBQA4Ozsb/BhLngzOpImqVZY0/S03N9dMkRARUUNz584dAECzZs0MfgyTJmq0mDQREVFVdJUmJk31YNmyZejbty+aNWsGDw8PjBkzBmlpaXptioqKEBkZCTc3Nzg7O2PcuHHIycnRa5ORkYGIiAg4OjrCw8MD8+fPx/379/Xa7N+/H71794ZcLoefnx/WrVtXIZ5Vq1ahXbt2sLe3R0hICI4dO2b0PluaB5OmB197IiJqunSVJg7P1YMDBw4gMjISR44cQWxsLEpLSzFy5EgUFBRIbebNm4dff/0V27dvx4EDB5CVlYWxY8dK+zUaDSIiIlBSUoLDhw9j/fr1WLduHZYsWSK1SU9PR0REBB555BEkJSVh7ty5ePHFF7Fnzx6pzdatWxEVFYU333wTJ0+eRFBQEMLDw5t8ZeXChQsAgA4dOgBgpYmIiP7W1IbnIBqQ3NxcAUAcOHBACCFEfn6+sLW1Fdu3b5fapKamCgAiPj5eCCFEdHS0sLKyEkqlUmqzZs0aoVAoRHFxsRBCiAULFoiuXbvqPdfEiRNFeHi4dL9fv34iMjJSuq/RaIS3t7dYtmyZQbGrVCoBQKhUqlr2uuG6deuWACAAiH/84x8CgHj77bfNHRYRETUQrVq1EgDEyZMnDX7M8OHDBQDxww8/mDAyw9Xm87tBzWlSqVQAAFdXVwBAQkICSktLERYWJrUJCAhAmzZtEB8fDwCIj49H9+7d4enpKbUJDw+HWq3GmTNnpDblj6FroztGSUkJEhIS9NpYWVkhLCxMavOg4uJiqNVqvVtjoxua8/b2Rvv27QFweI6IiP72MHOaCgsLTRKTKTWYpEmr1WLu3LkYOHAgunXrBgBQKpWws7ND8+bN9dp6enpCqVRKbconTLr9un3VtVGr1SgsLMTNmzeh0WgqbaM7xoOWLVsGFxcX6ebr61u3jjdguqTJz88PHv+3miWH54iICCi7YgSXHDCTyMhInD59Glu2bDF3KAZZtGgRVCqVdMvMzDR3SEbHpImIiKpSUFAgXWqrqcxpahArgs+aNQu7du3CwYMH4ePjI2338vJCSUkJ8vPz9apNOTk58PLykto8eJabbgipfJsHh5VycnKgUCjg4OAAa2trWFtbV9pGd4wHyeVyg1dAtVS6pKlTp05SFY7Dc0REBPw9CdzKykrvmnI1seSkyayVJiEEZs2ahR07dmDfvn3SvBmd4OBg2NraIi4uTtqWlpaGjIwMhIaGAgBCQ0ORkpKiVwGJjY2FQqFAYGCg1Kb8MXRtdMews7NDcHCwXhutVou4uDipTVN0+fJlAGVnzrHSRERE5ZUfmpPJZAY/zpKTJrNWmiIjI7F582b8/PPPaNasmTR/yMXFBQ4ODnBxccH06dMRFRUFV1dXKBQKzJ49G6Ghoejfvz8AYOTIkQgMDMRzzz2H5cuXQ6lUYvHixYiMjJQqQa+88gpWrlyJBQsWYNq0adi3bx+2bduG3bt3S7FERUVhypQp6NOnD/r164fPP/8cBQUFmDp1av2/MA1EVlYWAMDHx0dKmm7fvo2SkhLY2dmZMzQiIjKzuiw3AFh20mTWJQfwf6ezP3j7/vvvpTaFhYXin//8p2jRooVwdHQUTz/9tMjOztY7zpUrV8SoUaOEg4ODcHd3F6+++qooLS3Va/PHH3+Inj17Cjs7O9GhQwe959D58ssvRZs2bYSdnZ3o16+fOHLkiMF9aWxLDmi1WiGXywUAceXKFaHRaIS1tbUAIK5du2bu8IiIyMz2798vAAh/f/9aPe6DDz4QAMQLL7xgoshqpzaf32atNIn/m0BWHXt7e6xatQqrVq2qsk3btm0RHR1d7XGGDRuGxMTEatvMmjULs2bNqjGmpiAvL0+6erWXlxesrKzg4eGB7Oxs5ObmonXr1maOkIiIzKkpVpoazNlz1LDohubc3d2lYU7OayIiIp26rNEEMGmiRkiXNHl7e0vbmDQREZEOK01E/6eypInLDhARkU5dLtZbvr3u8ZaESRNV6vr16wCgN3eJlSYiItKpa6VJt+5ifn6+kSMyPSZNVCkOzxERUXXqOqeJSRM1OhyeIyKi6hij0mTIWfQNCZMmqlRlSVPLli0BADdu3DBLTETU+Jw4AQwfXvYvWZa6zmnSJU2lpaUoLCw0dlgmxaSJKlVZ0tSiRQsAZauCExEZw4YNwB9/ABs3mjsSqq26VpqcnZ1hbW0NwPI+T5g0UQUajUa6pE35ieCurq4ALO+HnIgalqtXgYQE4ORJYOvWsuGZLVvK7icklO2nhq+uc5pkMpnFzmsy64rg1DDl5uZCo9FIq4Dr6JKm/Px8aDQa6ZsCEVFttGtX/p4AIMONG0BwcLmtljXVpUmqa6UJKBuiu3XrlsUlTaw0UQW6oTkvLy+9xEg3PCeEgEqlMktsRGT5Nm0CbKSv7GUfQ7okycambD81fHWd0wT8Pa/J0kYumDRRBZXNZwIAW1tb6RtFXl5evcdFRI3D5MnA0aOV7zt6tGw/NXwPU2nSfQlnpYksnm5hyweTJuDvH3QmTURkHJoH/iVLUdc5TYDlrtXEpIkq0FWayk8C1+FkcCIyBg8PwMbmJoAEWFn9E0ACnJ3votw0SmrAhBBMmoiAqofngL+TJlaaiOhh+PgAbm7BAEIwa5YtgBB06TIKPj7mjowMce/ePWi1WgB1m9NkqUvYMGmiCpg0EZGpCSFw61bZ35qBAwcCAPLyss0ZEtWCbj6TTCaDk5NTrR/PShM1GkyaiMjUVCoV7t+/DwAICAgAANy6dcucIVEt6IbmnJ2dIZPJav14Jk3UaHAiOFkKXoLDcukux9SsWTPpb01+fr6USFHD9jBnzgFccoAaicLCQty8eRMAJ4JTw8dLcFguXdLk7u6OFi1aSNUKfiGzDA+zRhNguUsOcEVw0nPt2jUAgJOTk5QglcfhOTK3q1eBmzcBmQzYurVs25YtwJQpZQskursDbduaN0aqmS5patmyJaytrdGiRQvk5eXh5s2belcioIbpYc6cAyx3eI5JE+m5+n8XfWrbtm2l49RMmsjcKr8Eh0Bw8N8/r7wER8Onq2i3bNkSAODm5oa8vDzOa7IQxhqes7SkicNzpCcjIwMA0KZNm0r3c04TmZv+JTjKEiUhyv7lJTgsR/lKE1A2TAf8nUxRw2bMpEm3dIElYNJEempKmlhpInObPBn4/ffKr33IS3BYjvJzmoCyShPAM+gshbHmNAkhpGNZAiZNpMfQpOn27dsQHAMhM9mzZ8///U/3DZWX4LA0rDRZtoed02Rvbw+5XA7AsobomDSRHkOTppKSEty7d6/e4iIqLyZmA4Bs+Prm4uOP7wJIAJANF5diM0dGhqpsThPASpOleNjhOcAy5zUxaSI9NSVNjo6OsLOzA8AhOjKPM2fOIDl5N6yt/XD8uBWiopxgZzcEQDtYW3NFaUvBSpNlM0bSZImXUmHSRBKtVltj0iSTyTgZnMxq/fr1AIAnnngUnp4ekMlkaN3aG0CJtDArNXyc02TZHnZOE8BKE1m4GzduoLi4GDKZDD7VXDWTk8HJXIQQ2L59OwDgueeek7brFmJl0mQ5Hqw06ZImVposw8POaQKYNJGF01WZvL29YWtrW2U7Jk1kLomJibhy5QocHBwwatQoaTuTJsty7949aU7kg8NzrDRZBmPOaeLwHFmkmobmdHgpFTKX//73vwCAUaNGwdHRUdrOpMmy6KpJdnZ20ocuh+csizHnNLHSRBaptkkTK01U33RJ09ixY/W2M2myLOXnM+muPKCrNOXl5UGj4RISDV1ubi4AVHq5LUNxeK6WDh48iNGjR8Pb2xsymQw7d+7U2y+EwJIlS9CqVSs4ODggLCwMFy5c0GuTl5eHyZMnQ6FQoHnz5pg+fbo01qpz6tQpDB48GPb29vD19cXy5csrxLJ9+3YEBATA3t4e3bt3R3R0tNH729AZmjRxIjiZQ2pqKlJTU2Fra4snnnhCb58uadJdO5EatgeXGwD+/vAVQljUh2hTVFJSgszMTABAhw4d6nwcJk21VFBQgKCgIKxatarS/cuXL8cXX3yBr776CkePHoWTkxPCw8NRVFQktZk8eTLOnDmD2NhY7Nq1CwcPHsSMGTOk/Wq1GiNHjkTbtm2RkJCAjz76CG+99RbWrl0rtTl8+DAmTZqE6dOnIzExEWPGjMGYMWNw+vRp03W+AdJdd46VJmqIdFWmsLAwuLi46O1jpcmyPDgJHABsbW2l95WTwRu2jIwMaLVaODg4wNPTs87HscQ5TWa9YO+oUaP0JnOWJ4TA559/jsWLF+Opp54CAGzYsAGenp7YuXMnnnnmGaSmpiImJgbHjx9Hnz59AABffvklHn/8cXz88cfw9vbGDz/8gJKSEnz33Xews7ND165dkZSUhE8//VRKrlasWIHHHnsM8+fPBwC88847iI2NxcqVK/HVV19VGl9xcTGKi/9eSE+tVhvtdTEXDs9RQ6arRD84NAf8nTRlZWVBCFHpxaap4agsaQLK5jWpVCrOa2rgLl++DKCsyvQwv2uc02RE6enpUCqVCAsLk7a5uLggJCQE8fHxAID4+Hg0b95cSpiAsm+hVlZWOHr0qNRmyJAh0oKMABAeHo60tDQpu42Pj9d7Hl0b3fNUZtmyZXBxcZFuvr6+D99pM9MlTW3btq22HSeCU33TaDQ4deoUAGD48OEV9nt7ewMo+zLDD9yG78E1mnS47IBlKJ80PQwOzxmRUqkEgAqlP09PT2mfUqmEh4eH3n4bGxu4urrqtansGOWfo6o2uv2VWbRoEVQqlXTTje9aqsLCQukPGec0UUOTmZmJkpIS2NnZVZrUy+VyqWrBIbqGr7I5TQCXHbAUuqSpY8eOD3UcJk1NiFwuh0Kh0LtZsitXrgAAnJycpB/kqnB4jurbxYsXAZR9s7W2tq60Dec1WY7qhucAVpoaOmNVmngZFSPy8vICAOTk5Ohtz8nJkfZ5eXlJpz3q3L9/H3l5eXptKjtG+eeoqo1uf1OgG84MCgqqcYxalzTx2yDVF91Zs35+flW24Rl0lkP3Hj34N5aVJstgrKRJ9/7fvXvXYr6EN9ikqX379vDy8kJcXJy0Ta1W4+jRowgNDQUAhIaGIj8/HwkJCVKbffv2QavVIiQkRGpz8OBBlJaWSm1iY2Ph7+8vZbmhoaF6z6Nro3uepuDPP/8EAAwePLjGtq1bt4ZMJkNBQUGFZJPIFHSVpk6dOlXZhpUmy6DRaHDmzBkAQGBgoN4+VpoaPiEELl26BODhkyZnZ2fpkl3nzp176Njqg1mTprt37yIpKQlJSUkAyiZ/JyUlISMjAzKZDHPnzsW7776LX375BSkpKXj++efh7e2NMWPGAAC6dOmCxx57DC+99BKOHTuGQ4cOYdasWXjmmWekiaHPPvss7OzsMH36dJw5cwZbt27FihUrEBUVJcUxZ84cxMTE4JNPPsG5c+fw1ltv4cSJE5g1a1Z9vyRmU5ukycHBQfrG39SWZSDzqE2liUlTw3b58mUUFhbCwcGhwpwYVpoavry8POls8Xbt2j308bp06QKgbB02S2DWpOnEiRPo1asXevXqBQCIiopCr169sGTJEgDAggULMHv2bMyYMQN9+/bF3bt3ERMTA3t7e+kYP/zwAwICAjBixAg8/vjjGDRokN4aTC4uLvj999+Rnp6O4OBgvPrqq1iyZIneWk4DBgzA5s2bsXbtWgQFBeE///kPdu7ciW7dutXTK2FeOTk5uHDhAmQyGQYMGGDQY7p37w4ASElJMWVoRABYaWpMdH8zAgMDK8xP46VUGj7d0Jy3tzccHBwe+ngBAQEALKfSZNZ1moYNGwYhRJX7ZTIZli5diqVLl1bZxtXVFZs3b672eXr06CFVUqoyfvx4jB8/vvqAG6m//voLANCtWzdpyLIm3bp1w3//+18mTWRyGo1GGg5gpcny6f5m6L54lcfhuYbPWPOZdFhpIotTm6E5Hd0fPA7Pkaldu3ZNWm6guuUwmDRZhuqSJg7PNXxMmqjJq0vSpBu6PHPmDLRarUniIgL+ns9U3XIDAKQJpXl5eRa17ktTU13SpDub6saNG3wPGyhTJU3p6el6l0hrqJg0NXFqtVqaiD9o0CCDH+fn5we5XI6CggKkp6ebKDqiv+czVTc0B5St+aL7A/zgxb+pYSgsLJTez8qSJg8PDwQEBEAIgb1799Z3eGQAYydNHh4eaN68OYQQOH/+vFGOaUpMmpq4P//8E1qtFu3atZO+qRvCxsZG+oDiEB2Zkq7SVN0kcJ1JkyYBALZs2WLSmKhuzp49C61WC3d39yov9Pr4448DAKKjo+szNDKQsZMmmUxmUUN0TJqasNLSUvzv//4vAFR54eTq8Aw6qg+GVpoAYOLEiQCAvXv3SqtOU8NRfmiuqkV0dX+LYmJiqj1RiOpfVlaWdI3S9u3bG+24uqTJEs6gY9LUhH388cc4deoU3Nzc8Pbbb9f68bp5TUyayJRqU2nq3LkzevfuDY1Gg59++snUoVEtVTefSWfw4MFwcnJCdnY2kpOT6ys0qoEQAv/85z+lxaNbtWpltGPrlh1gpYkarDNnzkiJ0meffVbhGlCG4Bl0ZGqGLjdQnm6I7scffzRZXFQ3hiRNcrkcw4cPBwD89ttv9RIX1ew///kPfv75Z9jY2ODrr7+u8XJbtcHhOWqwioqKsHTpUvTp0wfFxcUYOXIk/vGPf9TpWLpKU1paGoqLi40ZJhEA4Ndff0VJSQkcHByqXW6gvAkTJgAom69X/hJLZF4lJSVITEwEUH3SBHBeU33QarXYvXs3rl69WmPbP//8U7pCxqJFi2p8/2pLlzSdP38eGo3GqMc2OkFGoVKpBAChUqnMHUqVLl++LLp37y4ACABi2LBhIisrq87H02q1onnz5gKA2LhxoxEjJSr7nWrdurUAIBYuXFirx4aHhwsAwtHRUfz0008mipBq46OPPhIAhKenpygsLKy27ZUrVwQAYW1tLa5du1ZPETYdBQUFYuzYsQKAsLe3F++9954oLi6u0C49PV2MHz9e+szo2rWrKCoqMno89+/fF3K5XAAQSUlJRj9+TWrz+c2kyUgaYtKUl5cn5s+fL1555RXx/vvvCzc3NwFAeHh4iB9//FFotdqHfo433nhDABBOTk7i7NmzRoiaqMzs2bMFANGxY0dx7969Wj02Ly9PPProo9If+7lz54qCgoIq29+/f7/CttLSUvH666+LZcuWidLS0lrH39BptVqRn59fL8+VnZ0tmjVrJgCI7777zqDH9O3bVwAQQUFB9RZnY1JaWlrp3/isrCzRp08f6XdDd3N3dxdPPfWUeOedd8R3330nFi5cKCUyVlZW4uWXXxY3btwwWbxPPPGEACBCQ0Mr/X00JSZNZqB70fPz88Xdu3el7WfPnhVvvfWWWLlypcjOztZ7TH5+vkhOTpZ+QDQajfj999/Fb7/99tB/JC5duiQCAgIq/GIEBweLzMzMhzp2eaWlpWL48OECgOjSpYu4fft2rR9fV3l5eSI5OVmcPXtWZGRkCI1GI+27ffu2WLt2rRgyZIho3bq1aNWqlRg0aJC4fPlyhePcv39f74+LUqkUJ0+eNNovbnZ2tjh48KBefLWlUqnEli1bxN69ew1Kdi9fvizS09Pr/HzmVFpaKj744AMhk8kEABEbG1vn48ydO1f62e/UqZN4+eWXxfTp08WGDRuEVqsV9+7dE+PHjxf29vZi1qxZ4vr160KIsoRi2rRp0mPDwsLErVu3avX8RUVF4vjx4+LcuXMiLy9Pet+ysrLEwoULxUsvvSR27dolCgoKxMWLF8XBgwfF6dOnRV5enkHHz8zMFB9++KH4/vvv9f7maLVaceHCBfHzzz+LxMTESpPFvLw8MXToUGFtbS0++uijCj9TpaWl4tChQ2LJkiVi7ty5IiYmRq8SoVKpxH/+8x+xZ88eoVarq4xRq9UKpVIpnn32WQFA9O3b1+Dfg0uXLglPT08BQAwZMkTk5ORUaHP16lVx5syZCvFfuXJFzJ8/X/zxxx81Po9WqxVpaWnS667VakVsbKzYvHnzQ/19Sk9PF3PnzhWffvpppVUcndzcXLF//37x9ddfi99//13qi0ajETdv3qyyb0uWLBElJSVCiLL369KlS1K827dvF25ubqJjx45i7dq1UnUoOTlZ+Pr6CgDCzc1NHDx4UGzatEl4eHhU+KzQ3YYPHy6Sk5Pr/DoY6urVq0KhUAgAYtmyZSZ/vvJqkzTJhOA5ncagVqvh4uKCHj164NSpU/Dw8ICXlxdOnToltZHJZAgMDIS7uzvu3LmDpKQkaLVadOjQAc8//zx++uknaaKkTCZDcHAwJkyYgC5dumDz5s2IiYmRVkzt378/XnzxRQwYMACFhYXSTalU4tChQ9i4cSNu3rwJHx8fTJ48GefPn0fnzp2xZMkSODo6GrXvubm56NWrF7KystCuXTv8+OOP6N27Ny5duoQff/wRmzZtgkajwYQJEzBgwACkpqYiKSkJSUlJuHjxIvz8/DBq1Cg8/vjjGDp0KPLy8vDFF1/gyJEj8PHxgY+PD27fvg2lUglra2s4Ojri3LlzOHnypN4pyc2aNUPnzp2Rm5uLzMzMSmMNCgrC4cOHkZ+fj48//hiHDh1CcnIy7Ozs0L17dxQWFkrzLry8vPD000/D19cXDg4OUKlUyM3NhUKhQI8ePeDh4YGsrCxcuXIFp06dwsWLF9GhQwf069cP/fr1Q+/evbFp0yYsXLgQd+/eRUBAAKZOnYrLly/j2LFj0Gg0cHBwgL29PRwcHODl5YX+/fujU6dOuHr1KtLT03Hz5k1cu3YNsbGx0ns/aNAgvPHGG+jVqxfc3d0hhIBarcb58+eRmJiITZs2SdcTfPTRR/E///M/uHHjBtRqNZ566imEhobixo0b+Omnn2BnZ4dhw4ahQ4cOkMlkEEJgx44d2LhxI+zt7eHp6Ql/f38EBwfD0dER169f17tdu3YNt2/fxqhRozBr1iw0b94cAHD//n0kJibi7t27GDJkSLUreetotVrExsbif//3f3Hy5EkAwMsvv4yvvvqqzj+bQNlk4hdffBFZWVl625988kncvn1b77qUcrkcERERUCgUWLduHaysrGBvb4979+6hRYsW8PPzg7u7OzQaDYqLi5GTk4MbN24gODgYS5YsQa9evXDo0CH897//xdatW3H79m3p2B4eHujSpQuOHDlS4xzAoUOHYvny5ejevTsOHTqE7Oxs+Pj4QKFQIDU1Ffv27cOmTZtQWloKoOxnv2/fviguLsaVK1f0LiUjk8nQo0cPDB8+HL1794aHhwfmzZuHs2fPSm2mTp2KDh06IDExEefOncOlS5cqxOjk5AR/f3+4ubnhzz//lH4erays0LNnTwwaNAgBAQG4efMmMjMzkZqairNnzyIvL086Rnx8PPr372/oW4ekpCQMHToUarUacrkckydPxiOPPAIvLy9899132LJlC4QQ8PHxQXh4OEJDQ3H37l0sXrwYd+/ehUwmw/z58zFixAjs3r0bMpkMM2bMQGBgIAoLCxEdHY0PP/wQx48fh62tLcLCwpCeni6d+t6zZ0989NFHsLe3R0ZGBk6fPo3U1FT4+/vj5Zdfhkwmw7///W9cunQJQ4cOxcCBA3Hp0iX8/vvv+P7776X3JzAwEDNnzsT169dx+/ZtdO7cGc2bN8fWrVsRGxur93dM91ru3LkT165dg5eXF/r16wcnJyeo1WrExMRI835GjBiB119/HfPmzUNycjJatmyJoKCgCguDNmvWDN26dUNKSgru3r0Lf39/7N69Gx07dgRQNt8sISEBhw4dwpkzZ5CdnQ2NRoPZs2dj9OjRRp30XZ3169fjhRdegK2tLf766y/069evXp5X9/mtUqmgUCiqb2zK7K0p0WWqD96srKzEE088IUJCQirdryt/6m4KhUJ06NChyqy/NrdevXpJ35xNLTExUbRv314AEDKZTKoS1Pbm4OAgbG1tDW7fsmVL4erqWuljAgMDxYcffiiOHz8u/vrrL+nb1KBBg4SLi0u1x3V2djbKe6C7WVtbP/QxOnXqJOzt7av9+Sn/fFZWVlUex8bGRm+bt7e3eOqpp0RoaGid41MoFGLQoEGib9++0jdGAMLf31+sXLlSfPTRR2LWrFni+++/F2q1Wmi1WpGTkyOio6PF4sWLhb+/v/SY5s2bi++//94oQ8hClFUeP/nkE/H222+LqKgoYWdnpxf36tWrxcCBAyv0ae3atSI5OVn62a7p9uDr6urqWunP2oABA0RkZKTw8vISQNm8kg4dOogWLVrotSsfZ2W3gQMHCj8/vwrb7ezsRI8ePYSrq2uVj23durVYtGhRlb+rLVq0EBMnThQvvfSSVPEpf+vcubNo165dja+JTCYTfn5+4osvvqjTexcfHy8N1VV2e/B3Qnfr2LFjlY8JDAzU+5vx4O9ns2bNpPma1fWrpr9zQ4cOFS1btqzxNerYsaMICwsTTk5OBv2cDRkypNq2MplMLFy4UHz66afC29tbb98jjzxicDWzvmm1WvH0008LoKwSdubMmXp5XlaazECXqS5atAj//Oc/kZ2djcuXL2PAgAHw9fUFAGRkZCAtLQ15eXmwsrLCwIED4eLigvXr1+OXX35BcHAwXn31Vbi6uiI7Oxu//PILfvzxR6Snp+OJJ57AP/7xD3h7e6OgoADbt2/HunXroFQq4eDgAAcHBzg6OsLFxQX9+vXD4MGDMWbMGDg4ONTba6BSqTBz5kzpVG97e3sMGTIE06ZNg1wux6ZNm3Dx4kV07doVPXv2RM+ePdG5c2ckJCTgt99+Q3R0tFQNGDx4MJ5//nncunUL169fh6urq3RdqoKCAnh5eeGRRx6Bt7c3gLLKxvnz53H+/Hl4enqiU6dO0sU/df78808MHz4c9+/fBwD07dsXc+fORd++fVFSUoLk5GTIZDIMHz4crq6u2Lt3L2JjY6FSqXDv3j0oFAq0bNkSt27dwqlTp3D79m14e3vD19cX3bp1g5+fH86fP49jx47h6NGjyMzMhLOzMz788EM8++yz+PbbbxEXF4fAwEAMHDgQzs7OKCwsRFFREQoLC3Hp0iUcPnwYGRkZaNeuHTp06ABPT0+4ublh4MCB6N27N7KysrB06VLExMQgMzNT7xtqq1at0KVLF4wYMQIvvPACSkpKsHr1aiQlJaF169YoLS3FTz/9JFUI+vbtC7lcjqNHj0rfiAHAwcEBs2fPhpeXF7Kzs5GSkoKTJ0+itLQUPj4+aN26tXTz8fGBEAJffPEFzpw5o/d666pOlV1DTPczW74KAZR9I546dSoWLlxo1HVgHpSUlIQpU6ZApVLh559/RlBQEIQQOHnyJHbu3Im9e/diwoQJmDdvHgCguLgYycnJyM7ORl5eHmxsbGBnZwcPDw84Ozvjm2++wXfffYf79+/Dx8cHjz76KCZPnoxhw4bB2toa9+7dw+nTp3H69Gl06tQJgwYNgkwmg0ajQV5eHtzc3GBlVXYyc2ZmJt544w1s2LABQgi0bt0a/v7+uHbtGvLz8+Hv748ePXrg2WefxYABA6DVanHo0CFcvXoVjo6OcHd3R9++faXf/ezsbBw8eBD79+9HWloarl69ig4dOuDbb79FmzZtsHv3bqxYsQItW7ZEcHAwunXrhk6dOqFNmzZShVCj0SAtLQ0XL17E9evXERoaiqCgIMhkMly7dg2HDh3Cn3/+iczMTHh6eqJVq1YICAhAYGAgOnfu/NB/h4QQiI+Px4YNG5CWloYrV66gV69eWLJkCfz9/bF//34cOHAAx44dQ05ODl555RVERkbi559/xpw5c1BSUoLRo0fj1q1b2Llzp/R74+3tjWnTpmH27NnIy8vDL7/8AoVCgWeffRZFRUVYuHAhdu7ciRYtWsDb2xuBgYHw9/fHnj178PvvvwMoq+YOGjQIcXFxSExMRKdOndC7d2/p/c/Ly8O7776L1NRUdOzYEc2bN8f58+dx7do1jBgxQqryAWUXKl61ahUyMzMRERGBoUOH4uzZs0hMTMT9+/dhbW2NAQMGIDg4GElJSYiIiEBWVhYmTpyITz/9FKdPn8aePXvw5JNPYujQoQDKFjE+d+6c9Ps5duxY2NnZPdT7YUp37txBWFgYjh07Bm9vb0yfPh2lpaXo1q0bRo8eLVWCdO9XcnIyhgwZglGjRsHe3r5Oz1mbShOTJiOpVXmvkcvMzIS9vT3c3d1rVdYVQuD06dOwsrJC165dTRLbhg0b8P7772PGjBmYM2eOQcNGdZWTk4NmzZoZfThUp7CwEDk5OXB0dISzs7NBz3Pr1i3s3bsXXbp0QY8ePQCUJaGJiYk4ceIE7ty5g2nTpqF169a1ikWr1eLAgQO4ffs27Ozs0Lp1a/To0QMFBQVYvXo1oqOj0apVK7Rq1Qq//fabdI0pmUwGPz8/DBgwAIMHD8aECRPQrFmz2r8YdSDK5nRKycrDunHjBu7evYt27doZZTgjIyMDRUVF6NSpU70NjzRWQgjpNbx06RKSk5PRq1evh3qvdF9aDF0KwxRUKhWuXr0q/S43Frdu3cLQoUMrfBGzs7NDp06dUFBQgGvXrklfgIGyL1y6S/O4u7ujU6dOcHZ2xvXr15GVlYXr16/jxo0bsLOzg7OzM1q3bo0OHTogMDAQPXr0wPjx45k01ScmTUSGEUIgJSUFWq0W/v7+9VoNJSLLkJOTgxUrVkCtVgMA4uLiKlxmpXv37ujXrx9iYmL05vHVFZOmesSkiYiIyDSEEEhNTUVWVhaaNWsGLy8vtG3bFkBZpTs5ORn37t2DEAJKpRIXLlxAUVERvL29pZuHhwdKSkpw9+5dZGZm4tKlS0hMTMRff/2FS5cuMWmqT0yaiIiILE9tPr95GRUiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjIAkyYiIiIiAzBpIiIiIjKAjbkDaCyEEAAAtVpt5kiIiIjIULrPbd3neHWYNBnJrVu3AAC+vr5mjoSIiIhq686dO3Bxcam2DZMmI3F1dQUAZGRk1PiiWyK1Wg1fX19kZmZCoVCYOxyjYt8sV2PuH/tmuRpz/xpj34QQuHPnDry9vWtsy6TJSKysyqaHubi4NJofpMooFIpG2z/2zXI15v6xb5arMfevsfXN0GIHJ4ITERERGYBJExEREZEBmDQZiVwux5tvvgm5XG7uUEyiMfePfbNcjbl/7Jvlasz9a8x9M4RMGHKOHREREVETx0oTERERkQGYNBEREREZgEkTERERkQGYNBEREREZgElTDT744APIZDLMnTtX2qZUKvHcc8/By8sLTk5O6N27N3766aeHOqa5GKt/b731FmQymd4tICDAxNFXz5jv3fXr1/GPf/wDbm5ucHBwQPfu3XHixAkTRl8zY/WvXbt2Fd47mUyGyMhIE/egasbqm0ajwRtvvIH27dvDwcEBHTt2xDvvvGPQNaZMxVh9u3PnDubOnYu2bdvCwcEBAwYMwPHjx00cfc0q69+lS5fw9NNPo2XLllAoFJgwYQJycnJqPNaqVavQrl072NvbIyQkBMeOHTNh5DUzVt8OHjyI0aNHw9vbGzKZDDt37jRt4AYwVt+WLVuGvn37olmzZvDw8MCYMWOQlpZm4ujrD5Omahw/fhz//ve/0aNHD73tzz//PNLS0vDLL78gJSUFY8eOxYQJE5CYmFjnY5qDsfvXtWtXZGdnS7e//vrLlOFXy5h9u337NgYOHAhbW1v89ttvOHv2LD755BO0aNHC1N2okjH7d/z4cb33LTY2FgAwfvx4k/ahuniM1bcPP/wQa9aswcqVK5GamooPP/wQy5cvx5dffmnqblTKmH178cUXERsbi40bNyIlJQUjR45EWFgYrl+/bupuVKmy/hUUFGDkyJGQyWTYt28fDh06hJKSEowePRparbbKY23duhVRUVF48803cfLkSQQFBSE8PBy5ubn10ZUKjNm3goICBAUFYdWqVfUReo2M2bcDBw4gMjISR44cQWxsLEpLSzFy5EgUFBTUR1dMT1Cl7ty5Izp16iRiY2PF0KFDxZw5c6R9Tk5OYsOGDXrtXV1dxddff13nY9Y3Y/fvzTffFEFBQSaKtnaM3bfXXntNDBo0yFTh1popfjbLmzNnjujYsaPQarXGCtlgxu5bRESEmDZtmt62sWPHismTJxs1bkMYs2/37t0T1tbWYteuXXrbe/fuLV5//XWjx26Iqvq3Z88eYWVlJVQqldQ2Pz9fyGQyERsbW+Xx+vXrJyIjI6X7Go1GeHt7i2XLlpmsD1Uxdt/KAyB27NhhgqgNY8q+CSFEbm6uACAOHDhg7NDNgpWmKkRGRiIiIgJhYWEV9g0YMABbt25FXl4etFottmzZgqKiIgwbNqzOx6xvpujfhQsX4O3tjQ4dOmDy5MnIyMgwUfTVM3bffvnlF/Tp0wfjx4+Hh4cHevXqha+//tqEPaieKd47nZKSEmzatAnTpk2DTCYzcuQ1M3bfBgwYgLi4OJw/fx4AkJycjL/++gujRo0yVReqZMy+3b9/HxqNBvb29nrbHRwczFbhrap/xcXFkMlkeosh2tvbw8rKqspYS0pKkJCQoHcsKysrhIWFIT4+3jQdqIYx+9bQmLpvKpUKwN8Xtbd0vGBvJbZs2YKTJ09WOT9g27ZtmDhxItzc3GBjYwNHR0fs2LEDfn5+dT5mfTJF/0JCQrBu3Tr4+/sjOzsbb7/9NgYPHozTp0+jWbNmpupKBabo2+XLl7FmzRpERUXhf//3f3H8+HH861//gp2dHaZMmWKqrlTKFP0rb+fOncjPz8cLL7xgxKgNY4q+LVy4EGq1GgEBAbC2toZGo8F7772HyZMnm6oblTJ235o1a4bQ0FC888476NKlCzw9PfHjjz8iPj7e4PfamKrrX//+/eHk5ITXXnsN77//PoQQWLhwITQaDbKzsys93s2bN6HRaODp6am33dPTE+fOnTNJH6pi7L41JKbum1arxdy5czFw4EB069bN2OGbBStND8jMzMScOXPwww8/VPgWp/PGG28gPz8fe/fuxYkTJxAVFYUJEyYgJSWlzsesL6boHwCMGjUK48ePR48ePRAeHo7o6Gjk5+dj27ZtpupKBabqm1arRe/evfH++++jV69emDFjBl566SV89dVXpupKpUzVv/K+/fZbjBo1Ct7e3sYMvUam6tu2bdvwww8/YPPmzTh58iTWr1+Pjz/+GOvXrzdVVyowVd82btwIIQRat24NuVyOL774ApMmTYKVVf3+Wa+pfy1btsT27dvx66+/wtnZGS4uLsjPz0fv3r3rPdbaYt8erm+RkZE4ffo0tmzZYuzwzce8o4MNz44dOwQAYW1tLd0ACJlMJqytrcXFixcFAHH69Gm9x40YMUK8/PLLdTrm/fv366NrBsVSl/5VpU+fPmLhwoXGDL9apupbmzZtxPTp0/W2rV69Wnh7e5ukH1Ux9Xt35coVYWVlJXbu3GmqLlTJVH3z8fERK1eu1Nv2zjvvCH9/f5P0ozKmft/u3r0rsrKyhBBCTJgwQTz++OMm6UdVavP37caNG+L27dtCCCE8PT3F8uXLKz1mcXGxsLa2rjDX5/nnnxdPPvmkqbpSgSn69iCYaU6TqfsWGRkpfHx8xOXLl03VBbPg8NwDRowYUeHb3dSpUxEQEIDXXnsN9+7dA4AKmba1tXWVZxTUdExra2sj9qB6puhfZe7evYtLly7hueeee/igDWSqvg0cOLDCKbPnz59H27ZtjRS5YUz93n3//ffw8PBARESE8YI2kKn6du/evYf+WX5Ypn7fnJyc4OTkhNu3b2PPnj1Yvny58YI3QG3+vrm7uwMA9u3bh9zcXDz55JOVHtPOzg7BwcGIi4vDmDFjAJRVfOPi4jBr1izTdKQSpuhbQ2GqvgkhMHv2bOzYsQP79+9H+/btTdMBczF31mYJyp9RUFJSIvz8/MTgwYPF0aNHxcWLF8XHH38sZDKZ2L17t/SY4cOHiy+//NKgY5qbMfr36quviv3794v09HRx6NAhERYWJtzd3UVubm59d0ePMfp27NgxYWNjI9577z1x4cIF8cMPPwhHR0exadOm+u5OBcb62dRoNKJNmzbitddeq8/wq2WMvk2ZMkW0bt1a7Nq1S6Snp4v//ve/wt3dXSxYsKC+u6PHGH2LiYkRv/32m7h8+bL4/fffRVBQkAgJCRElJSX13Z0KHvz79t1334n4+Hhx8eJFsXHjRuHq6iqioqL0HvNg/7Zs2SLkcrlYt26dOHv2rJgxY4Zo3ry5UCqV9dWNShmjb3fu3BGJiYkiMTFRABCffvqpSExMFFevXq2vblTKGH2bOXOmcHFxEfv37xfZ2dnS7d69e/XVDZNipamWbG1tER0djYULF2L06NG4e/cu/Pz8sH79ejz++ONSu0uXLuHmzZtmjLRu6tq/a9euYdKkSbh16xZatmyJQYMG4ciRI2jZsqU5ulGpuvatb9++2LFjBxYtWoSlS5eiffv2+Pzzz+t9MnFNHuZnc+/evcjIyMC0adPqO2yD1LVvX375Jd544w3885//RG5uLry9vfHyyy9jyZIl5uhGperaN5VKhUWLFuHatWtwdXXFuHHj8N5778HW1tYc3ahWWloaFi1ahLy8PLRr1w6vv/465s2bp9fmwf5NnDgRN27cwJIlS6BUKtGzZ0/ExMRUmBxubnXp24kTJ/DII49I96OiogAAU6ZMwbp16+olbkPUpW9r1qwBgApnfn7//fdmOcHE2GRCmHFpXCIiIiIL0bCn9xMRERE1EEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIiIjIAEyaiIiIiAzApImIGq0uXbrgm2++qbbNrVu34OHhgStXrtR4vHfffRf9+/c3UnTAM888g08++cRoxyMi02LSRESNUmFhIS5cuICgoKBq27333nt46qmn0K5duxqPmZycjJ49exonQACLFy/Ge++9B5VKZbRjEpHpMGkiokbp9OnTEEKgW7duVba5d+8evv32W0yfPt2gYxo7aerWrRs6duyITZs2Ge2YRGQ6TJqIqFFJSkrC8OHDMWjQIGi1WrRp0waff/55pW2jo6Mhl8srHXJLSEjAkCFD4ODggF69euHo0aO4dOmSXtKUkZGBZ599Fi1atICrqysmT56M27dvS/uPHj2KQYMGwcHBAT179sTBgwchk8lw+vRpqc3o0aOxZcsWo/WfiEyHSRMRNRqXLl3C0KFDMXz4cDz55JMYO3YsXn31VcybNw9JSUkV2v/5558IDg6usP3cuXN45JFHMHToUJw+fRqLFy/GmDFjAAA9evQAAFy8eBHBwcHw8/PDkSNHEBsbi4sXL2L+/PkAyipdI0aMwLBhw5CYmIg33ngD48ePh1wuR0BAgPRc/fr1w7Fjx1BcXGz8F4SIjEomhBDmDoKIyBgeffRR+Pj44Pvvv0dISAgmTpyIuXPnokWLFnj33Xcxe/ZsvfZjxoyBm5sbvv32W73tI0aMQOvWrbFhwwZp2/jx45GSkoJz584BAEaOHInQ0FC8/fbbUpuffvoJ8+fPx+XLlzF8+HB4eXlh8+bN0v4nn3wS165dw8mTJ6Vtp06dQlBQEK5cuYK2bdsa9fUgIuOyMXcARETGoFQqsW/fPhw+fBgajQYpKSlYtmwZrKysYG1tDTs7uwqPKSwshL29vd62q1evYt++fXqJDQDY2tpKQ3NXr15FbGws/vrrL72z3zQaDXx9fXH16lX88ccfesNwACCXyytMTHdwcABQNr+KiBo2Jk1E1CgcOXIEWq0WPXv2RFpaGgoLC9GzZ09cuXIFt2/fxoABAyo8xt3dXW8OElA2J8rGxgbdu3fX256YmIgpU6YAKJsQ7urqiqNHj1Y4poODA06cOAE7Ozt07dpVb19qaipefPFFvW15eXkAgJYtW9a+00RUr5g0EVGjUFJSAgAoKipCYmIi2rZtC1dXVyxfvhzdunWrkAQBQK9evSqcuWZlZQWtVouSkhLY2JT9iYyOjsa5c+ekSpOtrS3u3LkDb29vODo6VjhuYmIi7t+/j6KiIqmSFRcXhzNnzlSoNJ0+fRo+Pj5wd3d/6NeAiEyLE8GJqFEIDQ2FjY0Nli5dioMHD6JDhw5YuXIlvvzyS6xbt67Sx4SHh+PMmTN61abg4GDY2tpKc5N++eUXvPTSSwAgJU0hISFQKBR4/vnnkZycjIsXLyImJgZz586t9Bi//vorZsyYAQAVkqY///wTI0eONO6LQUSmIYiIGokNGzaIVq1aCQDCxsZGhISEiIMHD1b7mH79+omvvvpKb9vGjRuFj4+PsLe3F0OGDBELFy4Unp6eem2OHj0qhg0bJhQKhWjWrJno3bu3WLFihbT/hx9+EL6+vsLJyUk8/fTT4u233xZ+fn56xygsLBQuLi4iPj7+IXtORPWBZ88RUaPj6uqKdevW4cknn6yx7e7duzF//nycPn0aVlamKb5rtVoMGzYMgwYNwvvvvy9tX7NmDXbs2IHff//dJM9LRMbFOU1E1Khcu3YNt2/frnYl8PIiIiJw4cIFXL9+Hb6+vkaJ4eDBg7hx4wZ69eqFmzdv4qOPPsLVq1exc+dOvXa2trb48ssvjfKcRGR6TJqIqFFJSUmBk5MT2rdvb/BjdHORjCUnJwcLFy7E9evX4enpibCwMBw7dgyurq567R48k46IGjYOzxEREREZgGfPERERERmASRMRERGRAZg0ERERERmASRMRERGRAZg0ERERERmASRMRERGRAZg0ERERERmASRMRERGRAZg0ERERERmASRMRERGRAf4/C2DP/KfElEQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp2.plot()" ] }, { "cell_type": "markdown", "id": "913dbf8f", "metadata": {}, "source": [ "#### 1.2.3 Defining the fitting regions" ] }, { "cell_type": "code", "execution_count": 50, "id": "91873ac1", "metadata": {}, "outputs": [], "source": [ "exp2.region_of_fit(5, flag=1)" ] }, { "cell_type": "markdown", "id": "472351b0", "metadata": {}, "source": [ "![pyddt_t3_5](https://user-images.githubusercontent.com/106104347/187998792-4fcb6b13-ebae-47e0-b539-fcec5b5d186d.png)" ] }, { "cell_type": "markdown", "id": "a4647902", "metadata": {}, "source": [ "#### 1.2.4 Asymmetry reading" ] }, { "cell_type": "code", "execution_count": 51, "id": "4fba0430", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████████████████████| 4/4 [00:05<00:00, 1.28s/it]\n" ] } ], "source": [ "exp2.fitter(100)" ] }, { "cell_type": "code", "execution_count": 52, "id": "30c8100d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-0.17184866, 0.10397331],\n", " [ 0.15763806, 0.05487308],\n", " [-0.12616801, 0.08049835],\n", " [-0.95195789, 0.11601925]])" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp2.slope_data" ] }, { "cell_type": "markdown", "id": "5eaf914d", "metadata": {}, "source": [ "Compare these values with the estimated for the skutterudite. The ratio slope error/slope is higher now, which indicates low-resolution asymmetries. In this context, **pyddt** is very helpful." ] }, { "cell_type": "markdown", "id": "8ccaf8a7", "metadata": {}, "source": [ "## 2. Compatibility analysis" ] }, { "cell_type": "markdown", "id": "7ebc29e6", "metadata": {}, "source": [ "Returning to the filled skutterudite data, we will show how to compare the experimental asymmetries with the predicted structural models.\n", "\n", "Within **pyddt**, the compatibility analysis is performed by the `AMD` class. The required inputs are the *.red* file saved after the data analysis and the structural models (created in the last tutorial)." ] }, { "cell_type": "code", "execution_count": 53, "id": "6a82247b", "metadata": {}, "outputs": [], "source": [ "amd = pyddt.AMD('_E7105.8_G002.red', ['ce3.in', 'ce4.in'])" ] }, { "cell_type": "markdown", "id": "13dceeea", "metadata": {}, "source": [ "Let's check the experimental asymmetries." ] }, { "cell_type": "code", "execution_count": 54, "id": "7038a8aa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['HL', 'LH', 'HL'], dtype='